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Abstract
This paper presents a novel vision-based human–machine interface (HMI) incorporated into an exoskeleton glove tailored for
patientswith brachial plexus injuries.Addressing the challenges posedby the loss of handmuscle control in individuals affected
by these injuries, a fully automated exoskeleton glove function akin to a robotic gripper is used to prevent muscle atrophy
through targeted hand muscle exercises. The proposed vision-based HMI is designed for a fully automated exoskeleton glove
and incorporates computer vision techniques for the automatic identification of the target object, estimating its material and
size, allowing the precise application of the required force to the target object. This novel approach enables users to efficiently
grasp unknown objects with a significantly reduced failure rate. The vision-based method exhibits a grasp success rate of
87.5%, surpassing the baseline slip-grasp method’s 71.9%. These results underscore the effectiveness of our vision-based
HMI in enhancing the grasp functionality of the exoskeleton glove.

Keywords Human machine interface · Automated exoskeleton glove · Material classification

1 Introduction

Brachial plexus injuries (BPIs) are commonly caused by
motorcycle or snowmobile accidents that damage the nerves
of the arm and hand, leading to a loss ofmovement and sensa-
tion [1]. To restore the ability to grasp and perform everyday
activities for those with BPI, automated exoskeleton gloves
are used to prevent muscle atrophy due to lack of use [2–4].
As seen in Fig. 1A, BPI patients often suffer from muscle
atrophy. This research is based on a previous research of
an automated exoskeleton glove [2, 5] with a voice-based
human–machine interface (HMI) [6, 7] that allows patients
to grasp objects with the help of their healthy hand using
voice-based HMIs. During the clinical experiment using the
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voice-based HMI (shown in Fig. 1), 60 grasp trials were
conducted on two patients with brachial plexus injuries. Par-
ticipantswere instructed to perform30 grasps on objectswith
known physical properties and 30 grasps on objects with
unknown properties. The success rate of grasping known
objects was 73.3%, whereas the success rate decreased to
56.7% for objects with unknown physical properties. This
notable difference in success rates underscores the critical
role that understanding physical properties plays in effec-
tive grasping. When the physical properties of an object
are known, control programs can be tuned according to the
necessary force required to secure the object. Conversely,
the lack of information about an object’s physical proper-
ties necessitates a trial-and-error control approach, which
inherently carries a higher risk of failure. This finding aligns
with previous research in robotic and human grasping, where
knowledge of an object’s weight, texture, and size signifi-
cantly enhances the efficiency and effectiveness of grasping
tasks [8, 9].

The motivation behind integrating a vision-based HMI
alongside the current voice-based HMI is to devise a tech-
nique for estimating the physical attributes of target objects.
This aims to improve the success rate of grasping, thereby
enabling users to manipulate objects beyond those prede-
fined. Unlike exoskeleton rehabilitation gloves that can use
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electromyography (EMG) sensors to perform real-time force
planning [10, 11], fully automated exoskeleton gloves are
designed for patients with BPI who have little or no EMG
signal from the hand and arm [1], making EMG-based
approaches unsuitable. Electroencephalogram (EEG)-based
HMIs can provide a force planning feature [12], but they suf-
fer from the wearability issues of the EEG sensor [13, 14].
Voice-based HMIs are well developed and convenient to use,
but not capable of grasp force estimation [6, 15, 16].

The integration of vision systems in robotic exoskele-
tons or grippers has been extensively explored by previous
researchers, none of the existing vision-based HMI incorpo-
rates initial grasp force estimation for unknown objects using
material detection. In their work, Kim et al. [17] designed an
exoskeleton glove using a computer vision approach to real-
time identification of the target object’s location. Similarly,
Pham et al. [18] proposed a vision-based method to infer
grasp force on a robotic gripper, but this approach neces-
sitates well-known physical properties of the target object.
Calandra et al. [19] and Yamaguchi and Atkeson [20] intro-
duced vision-based methods combined with tactile sensors
to achieve a more stable grasp on a robotic gripper, with
the vision systems primarily employed for motion and posi-
tion tracking. Takamuku andGomi [21] suggested that visual
feedback of object motion could be utilized for the estima-
tion of dynamic forces; but also assumes knowledge of the
physical properties of the target object in advance.

This research introduces a vision-based method capable
of conducting material detection on commonly used objects
through transfer learning on a dataset designed for house
interior material detection. Leveraging information about
the identified material, the physical properties of the target
object can be estimated and subsequently utilized to calcu-
late the appropriate grasp force. The concept of the proposed
vision-based HMI is based on the natural grasping process
of humans. People can pick up and lift an item without being
aware of its exact weight, material, or size. Research has
demonstrated that evenwith limited haptic feedback, humans
can still achieve a secure grip based on visual information
[22].

The primary contributions of this study can be summa-
rized as follows. Initially, we applied transfer learning to
the state-of-the-art house interior surface material detection
techniques, adapting them for the efficient identification of
materials on common objects in constrained environments.
Subsequently, we carried out system integration, pairing the
vision-based systemwith a voice-based command system [6,
7] and a slip-grasp force control system [7, 23], enabling the
cohesive functioning of the exoskeleton as a whole. Lastly,
preliminarygrasp experimentswere conductedwith ahealthy
subject to showcase the effectiveness of the vision-based
HMI in estimating the initial grasp force. The results demon-

Fig. 1 Prior clinical experiments using a voice-based HMI experienced
a high failure rate in grasping objects with unknown physical properties.
A Subject with BPI on her right hand experience muscle atrophy due to
lack of exercise.BThe subject with BPI has no control over the muscles
of her hand and arm.CThe subject can grasp the target itemwith the aid
of an exoskeleton glove. D The subject with BPI does not have control
over his hand and armmuscles. E The subject can hold the target object
with the assistance of an exoskeleton glove. F The exoskeleton glove
used in the clinical experiment depicted in B–E is also employed in this
research

strated an increased grasping success rate, exceeding that of
the baseline slip-grasp method by 15.6%.

2 Related work

2.1 Slip-grasp force planningmethod

Slip-grasp methods are commonly used to find the appropri-
ate grasp force for unknown objects through trial and error.
Lee et al. [24] proposed a slip detection method using a cus-
tomized pressure sensor to measure slippage at the fingertips
of the SAFER exoskeleton glove. A hybrid slip detection
method for an exoskeleton glove was proposed by Guo et
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al. [7] and Xu et al. [23]. This method utilizes both serial
elastic actuators (SEAs) and force sensitive resistors (FSRs)
to enhance its accuracy. The force controller supplements
force to the fingertips when the object slips. However, this
reinforcement process often leads to a laborious grasping
experience where users must persistently refine the optimal
grasp force through repeated failures, rendering it impracti-
cal for exoskeleton glove users. Moreover, slip detection on a
robotic exoskeleton glove differs from a robotic hand or grip-
per due to space and size limitations. Previous researchers
have designed multiple slip detection sensors for robotic
hands and grippers and have achieved good results with the
slip-grasp force planning method [25, 26]. However, in an
exoskeleton glove application, there is insufficient space to
accommodate larger and more precise slip detection sensors
at the fingertips. This sensor limitation results in accuracy
issues for the slip-grasp method.

In this study, the slip-grasp method proposed by Guo et al.
is incorporated into the system (illustrated in step 4 of Fig. 2.
Additionally, the standalone slip-grasp force control, devoid
of the estimated initial grasp force, is employed as the base-
line to showcase the necessity of a vision-based estimation
system.

2.2 Material recognition in the wild andMINC-2500
dataset

Surfacematerial detection using computer vision can be used
to estimate the weight and the surface friction coefficient of
unknown objects. The state-of-the-art material recognition
dataset is material in context (MINC). Bell et al. [27] built
the MINC dataset with images of human-labeled material
in the real world and proposed a deep learning-based mate-
rial segmentation method. Bell et al. [27] used Grad-CAM
[28] method to generate a probability map from trained con-
volution neural network and used the conditional random
field (CRF) algorithm [29] to calculate a label for each pixel.
The advantage of this method is that it does not require a
pixel-wise label, which is ideal for applications with limited
segmented data.MINC-2500 is a subset of theMINCdataset,
which contains 57,500 image patches for 23 different types of
materials. However, theMINC-2500 dataset mainly contains
long-shot or extra-long-shot interior design images, which
are taken from a distance and contain many different objects
in context. This research focuses on detecting the surface
material of objects in images that are taken in a close-up or
medium-close-up view. Transfer learning was performed to
transfer the learned weight from MINC-2500 to a collected
close-viewmaterial dataset to improve the accuracy of mate-
rial classification. The setup of the neural network and the
experimental results are discussed in Sects. 5 and 8.4.

3 HMI system overview

The vision-based HMI is designed to grasp an object without
the need for detailed measurements in advance. The goal is
to find the initial grasp force by estimating the dimension,
shape, weight, and surface material of the target object. The
structure of the vision-based force planning system is shown
in Fig. 2. Sample images for the exoskeleton grasping envi-
ronment, object category, and object material are shown in
Fig. 3.

The first step of the proposed system uses voice input
from a microphone to perform user verification and grasp
activation [30].

After receiving a grasp command, the camera embedded
in the glasses will start to take pictures and perform the fol-
lowing four steps on the image to estimate the target object’s
physical properties.

(1) The input images are sent to an object detector. Object
detection will help the vision-based force planning method
to understand the environment by detecting all objects in the
view.

(2) The target object can be extracted based on anARUCO
marker, which is a commonly used tool in single camera pose
and position estimation application [31, 32]. The placement
of the ARUCO marker is shown in Figs. 2 and 3. The target
object category and size are acquired, and the grasp type is
determined according to the target object’s category.

(3) The size of the object is calculated based on the number
of pixels.

(4) The surface material of the target object is acquired by
analyzing the material of the target object. Given the object’s
size and surface material, the object’s weight can be esti-
mated.

In the third step, the initial grasp force is calculated based
on the physical properties of the target object.

Lastly, the initial grasp force is send to a slip-grasp force
control system for minor adjustments [30].

4 Object detection

The state-of-the-art object detection methods are based on
single shot detector (SSD) [33], Faster R-CNN [34], Effi-
cientDet [35], and YOLOV4 [36]. Researchers have previ-
ously tested these methods on the common objects in context
(COCO) dataset [37]. The inference speed and mean aver-
age precision (mAP) at 50% intersection over union (IOU)
of seven distinct object detection methods are assessed on
a curated dataset comprising images from SVWSUN video
glass. This dataset, termed the first-person view (FPV) grasp
dataset throughout the paper, serves as the basis for selecting
the optimal object detection method. Figure 3 provides sam-
ple images from the FPV grasp dataset. The experimental
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Fig. 2 The system architecture utilized in this study comprises four
main stages. Initially, there exists a voice-activated initiation system.
Following this, a vision-driven estimation system is engaged, triggered
by the activation. The third stage encompasses the initial calculation

of the grasp force, drawing upon the inferred physical attributes from
the previous step. Lastly, a slip-grasp force control mechanism is intro-
duced to facilitate the generation of control signals and the refinement
of force, all stemming from the initial grasp force calculation

Fig. 3 Sample images for the exoskeleton grasping environment, object
category, and object material

results are shown in Fig. 8. According to the experiments,
YOLOV4 was selected as the object detection method used
in this research; it better balanced speed and mAP than other
methods.

4.1 Target object detection

The target object is determined by the outcome of the
VOLOV4 algorithm and its spatial relationship to the
ARUCOmarker. The output from theYOLOV4 object detec-
tion algorithm is an object category vector c, an object
bounding box vector B, and an object center vector S. The
nth object detected in an image belongs to category nc.

c = [1c,2 c, . . . ,n c] (1)

For the nth object detected in an image, the object’s
bounding box nb is the combination of the upper left cor-
ner npul = (nxul,n yul) and the lower right corner nplr =
(nxlr,n ylr).

B = [1b, 2b, . . . , nb]
= [(1xul,1 yul,1 xlr,1 ylr), . . . , (nxul,n yul,n xlr,n ylr)]

(2)

For the nth object detected in an image, the center of the
pixel of the detected object is located at ns calculated from
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the bounding box nb.

S = [1s, 2s, . . . , ns]
= [(1xs,1 ys), . . . , (nxs,n ys)]

(3)

The target object is selected based on the distance to the
ARUCO marker located on the exoskeleton glove. The out-
put of the ARUCO application programming interface (API)
contains the center coordinate of the marker: sm = (xm, ym).

The exoskeleton glove used in this research is right-
handed with the ARUCO marker placed on the index finger
linkage (see Fig. 3). A weighted distance function was cus-
tomized to find the distance between the ARUCO marker
center coordinate sm and the detected nth object center ns:

nd = w0(xm −n xs) + w1(
n ys − ym)

+
√

(xm −n xs)2 + (ym −n ys)2
(4)

where nd is the nth object distance between the object center
and the ARUCO marker center. w0 is the weight that serves
as the penalty for the object located on the right of themarker,
and w1 is the weight that serves as the penalty for the object
located above the marker. (nxs,n ys) is the coordinate of the
center of the object from the vector of the center of the object
ns. The grasped object’s index i can be found by minimizing
the customized distance function nd:

i d = min(1d,2 d, . . . ,n d) (5)

The category of the target object is i c, the bounding box is
ib, and the center coordinate is is.

4.2 Target object size estimation

The size of the target object is determined by pixel count
relative to the ARUCO marker. To ensure accurate estima-
tion, the user must align the ARUCO marker and the target
object manually, maintaining a close to equal distance from
the camera. This allows for estimating the target object’s size
from a 2D image perspective.

The detected object’s bounding box ib can be transferred
from pixel coordinates to camera coordinates, and then to
marker coordinates. The coordinates are explained in Fig. 4.
The Euclidean distance between the points e and f in the
marker coordinates is the length of the object (w) in cen-
timeters (points are shown in Fig. 4). The Euclidean distance
between points f and g in themarker coordinates is the height
of the object (h) in centimeters. The size of the ARUCO
marker is 2cm in width and 2cm in height. The size of the
target object can be determined in the same coordinate sys-
temby analyzing the number of pixels relative to theARUCO
marker.

Fig. 4 Illustration of the camera, marker, and pixel coordinates

The following method can be used to convert points from
pixel coordinates to marker coordinates. The ARUCO API
outputs the rotation vector (r) in the axis-angle representation
and the center coordinate (t) of the marker in the camera
coordinates. To transfer a point pp = (u, v) from the pixel
coordinates to the camera coordinates pc = (xc, yc, zc), the
following equations are used:

xc = u − sx
fx

dz (6)

yc = v − sy
fy

dz (7)

where dz is the distance from the marker to the camera in
the camera coordinates. sx and sy are the coordinates of the
principle point in the camera coordinates. The sx and sy val-
ues utilized in this study are 640 and 360, measured from
SVWSUN video glass. fx and fy are focal lengths of x and
y axis in pixels. The fx and fy values utilized in this study
are 1184 and 1249, measured from SVWSUN video glass.

To transfer a point pc = (xc, yc, zc) from the camera
coordinate to the marker coordinate pm = (xm, ym, zm), the
following equations are used:

R = Rodrigues(r) (8)

pm = RT (pc − t) (9)

where Rodrigues formula was used to build a transformation
matrix R from the axis-angle representation rotation vector
r. t is the marker coordinate center represented in the camera
coordinates.
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5 Material classification

There are two common approaches to detect the surface
material of an object, including image classification based
on center pixels and semantic segmentation on the entire
image [27, 38, 39]. The most widely used material clas-
sification datasets are the Flicker Material dataset (FMD),
MINC, and Open Surface dataset. There are only limited
pixel-wise annotated images provided, and most of these
annotated images are furniture from the interior of a house,
which is very different from this application. Due to the lim-
ited availability of annotated data, a pixel-wise supervised
classification method such as UNet [39, 40] cannot be used.
For this application, the center pixel classification method
was used to classify the material of a given object image, and
the conditional random field (CRF) [29] method was used
for segmentation. Material segmentation is used to visualize
the classification result.

Since this application focuses on grasping daily used
objects as shown in Fig. 3, the number of classes in MINC-
2500was reduced from23 to 5,which include ceramic,metal,
glass, plastic, and wood.

5.1 Material classification challenges

Initially, the deep learningmaterial classificationmethodwas
trained and tested on MINC-2500 and achieved good accu-
racy. The originalMINC dataset material patch classification
was trained on VGG-16, AlexNet, and InceptionV1 in 2014.
TheVGG-16 architecturewas used as a performance baseline
to test the new networks, which achieved high classification
accuracy in the ImageNet challenge: InceptionResNetV2 and
ResNet152V2.Moreover, networks that achieve similar clas-
sification accuracy were tested, but have faster inference
speeds: InceptionV3, ResNet50V2, and MobileNetV2. In
addition to different network architectures, the NetVLAD
pooling method was tested, which is a clustering-based pool-
ing method commonly used in speaker verification, face
detection, and place recognition [41].

The model’s pre-trained weights are sourced from Ima-
geNet, and training halts if the validation loss fails to decrease
for ten consecutive epochs. To evaluate the training out-
come, a customdataset (referred to as the close-viewmaterial
dataset in the rest of the paper) was employed, mirroring
the application’s use case. This dataset comprises images
sourced from the FMD dataset and those gathered online.
Figure 7 illustrates sample images from this dataset. The
close-viewmaterial dataset encompasses 169 images for each
of the five categories.

The training results and model performance compari-
son are shown in Table 1. According to training results,
ResNet50V2, MobileNetV2, and InceptionV3 are the top 3
networks that achieve a good time and performance balance

in the MINC-2500 validation set. However, the MINC-2500
does not have a perfect generalization to material classifica-
tion. The context in the MINC dataset is very different from
that of this application, which prevents the network from
finding a correct label during testing on the close-view mate-
rial dataset. NetVALD clustering pooling layer also does not
improve accuracy. To solve the generalization issue, transfer
learningwasperformed to retrain themodel in theClose-view
Material dataset. Transfers from ImageNet and MINC-2500
weight were experimented. The results are shown in Table
2. The results show that the transfer from MINC-2500 using
ResNet50V2has the best accuracywhen testing on theClose-
view Material dataset.

5.2 Proposed approach: transfer leaning using
ResNet50V2

Based on the experimental results from the previous section,
ResNet50V2 was used to transfer the weight from ImageNet
to the MINC-2500 dataset. The number of material classes
in MINC-2500 is reduced to metal, ceramic, plastic, glass,
and wood. The input layer is modified to match the MINC-
2500 size, the convolution blocks from ResNet50V2 have
not been modified, and the weight is trained using the initial
value from ImageNet. The output of the convolution layer
consists of 2048 feature maps M[12×12×2048]. The pooling
layer uses global average pooling to group the feature maps
M[12×12×2048] toM[1×1×2048] and classified into five classes
multiplied by weight W[5×2048]. Due to the low generaliza-
tion accuracy of the MINC-2500 dataset, the MINC-2500
weight was transferred to the close-view material dataset
using the same architecture. The training and inference pro-
cedure is shown in Fig. 5.

When inferring on a sample image, the ResNet50V2 net-
work was modified to output a class probability map cP[1×5]
and a feature-map-sized class probability map fP[12×12×5]
using Grad-CAM [28]. The Grad-CAM is generated using
the following equation:

fP =
2048∑
n=1

nWnM (10)

Where, nM is the nth feature map and nW is the weight of
the nth feature map. The probability map fP[12×12×5] will
be resized to pixel level probability map pP[362×362×5] using
cubic spline interpolation.Theprobabilitymap pP[362×362×5]
and colored image I[362×362×3] are input into a CRF algo-
rithm to perform pixel level unsupervised segmentation by
minimizing the following energy function [29]:

cE(x) =
∑
i

U (i) +
∑
(i, j)

Par(i, j) (11)
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Table 1 Results of training on MINC-2500 and testing on the close-view material dataset

Network MINC-2500 accuracy (%) Close-view material accuracy (%) Speed (ms)*

VGG-16 71 22 279

InceptionV3 83 21 215

VGG-16-N* 68 21 292

InceptionV3-N* 77 22 225

MobileNetV2 75 20 173

ResNet50V2 78 23 228

ResNet152V2 84 22 487

InceptionResNetV2 81 21 472

aSpeed*: the inference time is measured by inference of one image on a E5-1260 CPU
b-N*: NetVALD layer with 32 clusters is added after the last convolution layer
The selected networks and their performance are highlighted in bold, indicating the reason they were chosen for transfer learning

Table 2 Performance
comparison between transfer
ImageNet and MINC-2500
weight to the close-view
material dataset

Network Transfer MINC-2500 accuracy (%) Transfer ImageNet accuracy (%)

ResNet50V2 79 76

MobileNetV2 72 71

InceptionV3 75 72

The selected network and its performance are highlighted in bold, indicating the reason it was chosen for this
application

where cE(x) is the energy function for class c. x is the set of
all pixels in image I. i and j are pixel indexes in set x. i and
j control a nested loop to pair each pixel with all other pixels
without repetition. U (i) is the unary energy that is the nega-
tive log probability of a pixel belonging to class c. Par(i, j)
is the pairwise energy that measures the pixels’ spatial and
color similarity. The unary and pairwise energy is defined in
the following equations:

U (i) = −log(ipPc) (12)

Par(i, j) = exp

(
−|i p − j p|2

2s2p
− |iI − jI|2

2s2c

)
(13)

where i
pPc is the pixel level probability of i th pixel in the

image belonging to class c. i p and j p are the position of
i th and j th pixels. iI and jI are the RGB values of i th
and j th pixels. Long-range connections were used in the
energy calculation. Thus, the pairwise energy contains only
the appearance kernel. sp and sc are the position similarity
and color similarity parameters, respectively. Parameter val-
ues sp and sc were chosen to be 60 and 10, respectively,
based on Krähenbühl and Koltun. The results of the CRF
algorithms will be an updated pixel level probability map

crfP[362×362×5].
The classification results can be found by finding themax-

imum value of the cP class probability map. The results can
be directly used to estimate the grasp force. The segmenta-
tion results can be used to perform pixel-wised classification

when the target object contains different materials. The
sample segmentation results and classification accuracy are
available in Sect. 8.4.

6 Weight estimation

The estimated size and material of the target object can be
obtained based on the methods described in the previous sec-
tions. However, the information is insufficient to estimate the
weight, and some assumptions need to be made in order to
calculate the volume of the target object.

The target object in this application can be classified into
four different categories according to their required grasp
type (shown in 3). The weight of an apple and a cell phone
is not affected much based on size; thus, the average weight
of an apple and a cell phone can be used as the weight of
the target object. Sports balls are usually very light, so it was
assumed that a sports ball weighs 20g if it has a diameter less
than 5cm, weighs 100g if it has a diameter between 5 and
10cm and weighs 250g if the diameter is larger than 10cm.

The shape of a spoon or fork can be simplified to a plate
with a thickness of 0.1cm. Thus, the weight of a spoon or
fork can be estimated using the following:

vs f = 0.1wh (14)

ss f = vs f ρ (15)
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Fig. 5 Training and inference procedure for vision-basedmaterial clas-
sification and segmentation. Initially, training commences with the
MINC-2500 dataset featuring reduced categories, utilizing ImageNet
weights as the starting point. Subsequently, transfer learning is applied

to the collected close-view material dataset, leveraging the previously
trained weights as a foundation. During inference, the network pro-
duces two outputs: a probability identifying the primary material and a
pixel-wise material probability map

where w and h are the estimated width and height of the
target object, respectively. ρ is the density of the material of
the target object. vs f is the volume of the object. ss f is the
weight of the target spoon or fork.

The shape of a bottle, cup, andwine glass can be simplified
to a hollow truncated cone. It is assumed that the truncated
cone has 2

3 of the volume of a cylinder of the same height.
The thickness can be assumed to be 0.2cm. Thus, the weight
of a bottle when filled with water can be estimated using the
following.

vb = 2

3
(vo − vt exti)

= 2

3

(
π(

w

2
)2h − π

(w

2
− 0.2

)2
(h − 0.4)

) (16)

sb = vbρ + viρw (17)

where vb is the volume of the material to form the bottle. vo
is the outer volume, vi is the inner volume. sb is the weight

of the bottle. ρ is the density of the material of the bottle. ρw
is the density of water.

The weight of a cup can be estimated similar to that of a
bottle. The only difference is that a cup might have a handle
and will make the volume calculation inaccurate. The size
of the handle was assumed to be 30% of the weight of the
cup w. Thus, the weight of a cup when full of water can be
estimated using the following.

if h ≥ w :
vc = 2

3
(vo − vi)

= 2

3

(
π

(w

2

)2
h − π

(w

2
− 0.2

)2
(h − 0.2)

) (18)

if w ≥ h :
vc = 2

3
(vo − vi)

= 2

3

(
π

(
0.7w

2

)2
h − π

(
0.7w

2
− 0.2

)2
(h − 0.2)

) (19)
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sc = vcρ + viρw (20)

where vc is the volume of material to form the cup. vo is the
outer volume, and vi is the inner volume. sc is the weight of
the bottle. ρ is the density of the material of the cup. ρw is
the density of water. Wine glass is a special cup with a long
leg, so it was assumed that the capacity of the glass is 50%
of a normal cup. Thus, the weight of a wine glass when full
of water can be estimated using the expression:

swg = vcρ + 0.5viρw (21)

7 Initial grasp force calculation

The initial grasp force is calculated based on the predicted
weight and the shape of the standard object. Figure6 illus-
trates the coordinate systems for grasping force initialization.
The origin of the world coordinates is placed at the cen-
ter of the object. The coordinates for the exoskeleton glove
are positioned at the center of the 9-DoF (Degree of Free-
dom) MPU-9250 inertia measurement unit (IMU). The IMU
undergoes calibration using recursive least squares [42] for
magnetometer calibration and extended Kalman filter [43]
for sensor fusion to align with the world coordinates. Assum-
ing that there is no torque applied on the object and the contact
forces are normal to the last link of each of the exoskeleton
fingers, for an arbitrary object, the force equilibrium equation
can be expressed as:

∑
i

μwRe
eRi

eFi + Mg = 0 (22)

where i ∈ {thumb, index, middle, ring, little}, wRe is the
rotation matrix from the exoskeleton glove coordinates to
the world coordinates, which is calculated based on readings
from the IMU.μ is the friction coefficient, which is estimated
based on the surface material. eRi is the rotation matrix from
the fingertip i to the exoskeleton glove coordinates, which
is calculated based on the forward kinematics of the glove
[2]. eFi is the vector of the contact force applied on fingertip
i , which is measured based on a calibrated SEA [44]. M is
the mass of the object, and g is the vector of gravitational
acceleration.

For the cylinder grasp and the tip grasp, the direction of the
friction force on each fingertip is always opposite to gravity.
Therefore, the above equation can be simplified to

∑
i

μFi =
Mg.

Fig. 6 The coordinate systems for initial force estimation. WCS, world
coordinate system; ECS, exoskeleton glove coordinate system; ICS, i-th
fingertip coordinate system

8 Experimental results

The experiment section encompassed three primary compo-
nents. Initially, the collected datasets used in this research
were introduced. Subsequently, the performance of object
detection, size estimation, and material classification was
assessed within these datasets. Finally, vision-based HMI
was incorporated into the slip-grasp force planning approach
and coupled with a voice-activated system. The experiments
were structured to contrast the combined approach of vision
and the slip-grasp method against the exclusive use of the
slip-grasp force planning method. The experimental proce-
dure involving human subjects received approval from the
Carilion Clinic Institutional Review Board (IRB-19-330).

8.1 Datasets

This application utilized two collected datasets: the FPV
Grasp dataset and the close-view material dataset.

The FPV Grasp dataset is used for validating the vision-
based grasp force planning method and comprises 30 images
captured from a 1080P SVWSUN video glass worn by a user
of an exoskeleton glove. The Video Glass undergoes calibra-
tion through a standard chess board calibration method to
rectify lens distortion. Each grasp object is annotated with a
bounding box. Sample images are depicted in Fig. 3.

The close-viewmaterial dataset is designed to enhance the
material classification performance with close-view context.
The dataset encompasses five labels: ceramic, plastic, metal,
wood, and glass. Each class includes a training set of 119
images, a testing set of 30 images, and a validation set of 20
images. Thematerial of the object’s center serves as the basis
for labeling each image. This dataset amalgamates images
sourced from online searches, the FMD dataset, and images
captured specifically for this research on grasp objects. Sam-
ple images are illustrated in Fig. 7. Notably, the images in
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Fig. 7 Sample images used in the close-view material dataset

this dataset offer more intricate details and fewer contextual
elements compared to those in MINC-2500.

8.2 Object detection and ARUCOmarker detection

The FPV Grasp dataset was used to test the performance of
different networks trained on the COCO dataset. The mean
average precision (mAP) at 50% intersection over union
(IOU)was used to quantify the object detection performance.
The speed wasmeasured based on the average inference time
of 10 images using the E5-1260 CPU. The results are shown
in Fig. 8. Multiple networks were tested, and YOLOV4 with
a 0.75 threshold was selected based on mAP and speed.

The successful detection rate Rs of object detection and
ARUCO marker detection can be calculated using the fol-
lowing equation:

Rs = TP − FP

n
(23)

where TP is true positive, which means that the ARUCO
API detection successfully detects the marker, and the object
detection successfully identifies the center object. FP is false
positive, which means that the marker detection recognized
the wrong marker or the object detection detects the wrong
center object. n is the total number of test images. The exper-
iments’ successful detection rate was 90% in the collected
FPV Grasp dataset.

Fig. 8 Object detection results.AmAP at 50% IoU of 7 different state-
of-the-art neural networks. B mAP vs. average inference time of each
neural network

8.3 Object size estimation

The experiment involved evaluating the FPV Grasp dataset
by comparing the detected target object’s sizewith the ground
truth sizes. For this purpose, images successfully detected
by both the YoloV4 object detector and the ARUCO marker
detector were utilized. To obtain the predicted size for each
object, the average of the estimated sizes from different
angles was taken. The ground truth sizes were determined
based on the width and height of the orthographic projec-
tion, as illustrated in Fig. 9.

The obtained results are presented in Table 3. To quantify
the difference between the predicted and actual object sizes,
the percentage difference between the products of width
(w) and height (h) was calculated. This evaluation metric
is termed the mean absolute percentage error (MAPE). The
MAPE difference between the predicted and actual object
sizes was found to be 26.9%. The main source of this error
was identified as the estimation process, particularly when
utilizing the bounding box to estimate the object’s dimen-
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Fig. 9 Examples of size measurements

Table 3 Size estimation experimental results

Object Actual* (cm) Predicted* (cm) Diff %

Plastic bottle A 6.5×11 8×13 45.4

Plastic bottle B 7×20 8×21 20

Plastic spoon 13×4 14×3.5 5.8

Plastic fork 14×4 14×3.5 12.5

Plastic cup 12×10 14×11 28.3

Plastic ball 7×7 6.8×6.8 5.6

Metal spoon 18×3.5 14.1×6.7 49.9

Metal fork 18×2.5 12×6 60

Metal cup 14×9 13.4×10.6 12.7

Wood spoon 16.5×4 11×7.8 30

Glass cup 12×14 12.9×15.1 15.9

Wine glass 20×5.5 19.4×7.3 28.7

Ceramic cup 19×11.5 18.8×15.2 30.8

Ceramic bowl 17.5×17.5 17×10 44.5

Cell phone 15×7.5 12×8.2 12.5

MAPE – – 26.9

aActual*: The actual size is defined by the width times height in cen-
timeters
bPredicted*: The predicted size is defined by the width times height in
centimeters

sions. This error tends to occur when the object is placed at
an angle during detection.

8.4 Object material detection

The training and testing results in the collected close-view
material dataset are shown in Table 2. According to the accu-
racy and speed of classification, the material classification
network used is ResNet50V2. The weight is transferred from
the MINC-2500 dataset.

Material classification validation was also performed on
the FPV Grasp dataset. The material classification accuracy
for all detected objects was 96%. In addition to material
classification, material segmentation is performed using the
CRF method to visualize the result of material classifica-
tion. Sample images of material segmentation are shown in
Fig. 10. Because of the restricted data used for training, par-
ticularly the absence of pixel-wise labeled data, the accuracy
of material segmentation is suboptimal and can only serve as
a visualization tool for our material classification network.
Our approach involves detecting the material situated at the
center of the object and assumes that the target object has uni-

Fig. 10 Sample material segmentation results

form material. In the future, as the availability of pixel-wise
labeled material images increases, it will become possible
to conduct end-to-end training. This can possibly improve
segmentation results and further refine material detection.

It is essential to acknowledge that material detection relies
solely on visual information, and appearances can be deceiv-
ing even for humans. This implies that lighting conditions,
object colors, or reflections can all influence the effective-
ness of the system. For instance, reflective objects may be
recognized as metal objects due to lighting conditions.

8.5 Object weight estimation

The experiments on the FPV Grasp dataset involved com-
paring the weight of the target object with the weight of
the corresponding ground truth. The materials used in the
objects had different densities: plastic (0.92 g/cm3), metal
(7.85 g/cm3), glass (2.7 g/cm3), ceramic (6 g/cm3), and
wood (0.9 g/cm3).

The results of these experiments are presented in Table 4.
However, it is worth noting that the weight of the containers
varied due to differences in the fluid level. For consistency,
it was assumed that all containers were full. To assess the
accuracy of the weight estimation, MAPE was employed
as the evaluation metric. The MAPE between the predicted
and actual object weights was found to be 59.8%. The rela-
tively large weight estimation error can be attributed to the
following factors. First, weight estimation is heavily influ-
enced by size estimation, which in turn can be affected by
the angle at which the object appears in the camera. Sec-
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Table 4 Weight estimation experimental results

Object Actual(g) Predicted(g) Diff (%)

Plastic bottle A 12–512 698 36.3*

Plastic bottle B 207 432 108.7

Plastic spoon 3 5 66.7

Plastic fork 3 5 66.7

Plastic cup 11–502 881 75.5*

Plastic ball 69 100 45

Metal spoon 48 74 54.2

Metal fork 22 57 159.1

Metal cup 172–576 619 7.5*

Wood spoon 7 8 14.3

Glass cup 358–779 1459 89.5*

Wine glass 188–369 399 8.1

Ceramic cup 480–1059 1756 65.8*

Ceramic bowl 315 596 89.2

Cell phone 222 200 10

MAPE – – 59.8

*: Containers have various weight due to the content. During weight
estimation, we assume all containers are full of water

ond, the assumption of standard shapes for all objects, such
as cylinders or boxes, may not hold true for most cases,
where cups might have handles, and wine glasses may have
long legs, leading to deviations from the standard shapes
used in the estimation process. Furthermore, despite some
instances of substantial percentage errors, the overall weight
difference remains acceptable. For instance, the metal fork
experienced a weight estimation error of 35g, representing a
159.1% overestimation compared to its actual size. The aver-
age weight difference across all objects is 173g, which still
provides meaningful information for several reasons. Firstly,
we deliberately overestimate the object’s weight to prevent
slipping, for instance, assuming a cup always has a full water
level. While the output force may not be optimal, more force
is applied and effectively reduces the risk of grasp failure.
Secondly, in caseswhere the estimatedweight is low, our slip-
grasp force control program can make adjustments based on
slippage. The weight estimation serves as an initial reference
point for our slip-grasp force control program.

8.6 Grasp experiments

Given the preliminary stage of the proposed method, a single
healthy male participant is involved in conducting the grasp
experiments. Due to the nature of the exoskeleton glove used
in this research, which is a rigid linkage exoskeleton, the user
cannot apply any force to the fingertips of the exoskeleton
linkages when wearing it.

The grasp procedure is as follows: The user initiates the
system using a personalized voice command system [6] to

capture a 1280×760 pixel image using the first-person view
SVWSUN video glass. By employing the methods proposed
in previous sections, the size and weight of the grasped
object can be calculated. The 9-DoFMPU-9250 IMU detects
the pitch, yaw, and roll of the exoskeleton glove. Using the
weight of the object and the IMU data, the initial grasp force
is computed, and the exoskeleton glove applies this force to
each fingertip [44]. The slip-grasp system is subsequently
employed to fine-tune the grasp force, ensuring stability dur-
ing grasping.

During the experiment, each of the 15 objects present
in the FPV Grasp dataset was subjected to 2–6 grasping
attempts from various angles and fluid levels, resulting in a
total of 64 grasp trials. Among these trials, 6 experienced fail-
ure of object detection,while 5 encountered errors inmaterial
detection. The grasp success rate is defined as the success
in picking up the target object. The overall grasp success
rate using vision-based HMI combined with the slip-grasp
method was 87.5%.

The failure in grasping is attributed to the combination of
the workspace limitation of the exoskeleton glove and mis-
matched grasp force. For instance, the exoskeleton utilized
in this research exhibits coupled finger motion. When per-
forming cylinder grasp and tip grasp, this coupled motion
prevents the exoskeleton from grasping at the ideal contact
angle and grasp trajectory. However, deviating from the ideal
grasp angle or trajectory does not always result in failure but
necessitates a more accurate initial grasp force. As depicted
in Fig. 11, cylinder grasp and tip grasp exhibit a higher fail-
ure rate compared to other grasps. When paired with a vision
system, bothmethods show significant improvement. Amore
detailed comparison is discussed in the next section.

8.7 Comparison between vision-based force
estimation and slip grasp force planning

To illustrate the efficacy of the vision-based initial grasp force
estimation method, we conducted 64 experiments solely
employing the slip-grasp force planning approach, achieving
a grasp success rate of 71.9%. However, when combining the
slip-grasp method with the vision-based approach, the suc-
cess rate increased to 87.5%. The success rates for each grasp
category are depicted in Fig. 11.

The comparison experiment reveals that utilizing a com-
bination of vision-based force estimation with the slip-grasp
system leads to a higher success rate compared to using only
the slip-grasp system. To demonstrate the benefits of utilizing
thevision-based initial force estimation technique,we carried
out an additional set of 20 grasp trials involving four distinct
items: a plastic bottle, a wine glass, a plastic spoon, and a
metal spoon. These particular objects were chosen based on
their notable performance in previous grasp experiments.
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Table 5 Comparison between vision-based force estimation and slip grasp force planning

Object Slip-grasp (succ/total trials) Vision (succ/total trials) Slip-grasp (index force/thumb torque) Vision (index force/thumb torque)

Plastic bottle 3/6 5/6 3.67N / 367Nmm 2.73N / 459Nmm

Wine glass 6/6 6/6 2.67N / 267Nmm 1.59N / 267Nmm

Plastic spoon 2/4 4/4 2N / 200Nmm 0.75N / 31.6Nmm

Metal spoon 3/4 4/4 2N / 200Nmm 1.2N / 50.8Nmm

Fig. 11 Experimental result of grasping daily used objects. Blue: num-
ber of successful grasps performed using the vision-based initial force
estimation with slip-grasp method. Red, number of successful grasps
performed using only the slip-grasp method. Yellow, the total number
of grasps for each individual method

For the vision-based method, the initial grasp force was
determined using the vision-based force estimation system,
and the slip-graspmethodwas not utilized in this experiment.
For the slip-grasp method, a predefined initial grasp force of
2N and 200Nmm is used. This method adjusted the grasp
force based on slippage to achieve a stable grasp (details can
be found in paper by Xu et al. [23]).

The grasping process was facilitated by 7 SEAs as
depicted in Fig. 12. The force and torque output of the index
finger and thumb rotary joints, which are the most critical
actuators during grasping, were measured and reported in
Table 5.

The results from the additional 20 grasp experiments are
presented in Table 5 and Fig. 13, demonstrate that the vision-
based force estimation system can produce adequate initial
grasp forces for various objects. This offers threemain advan-
tages during grasping. First, the initial grasp force estimate
helps prevent the application of insufficient thumb torque,
which can result in slippage. For example, in Fig. 13B, the
plastic water bottle could not be lifted by the slip-grasp
method due to the insufficient predefined thumb torque. Sec-
ond, the initial grasp force can prevent the application of
excessive force and torque. For example, in Fig. 13F, the

Fig. 12 The joint configuration of the exoskeleton glove in the grasp
experiment. The thumb rotary joint of the exoskeleton facilitates move-
ment of the thumb carpometacarpal joint in the human hand

plastic spoon could not be lifted by the slip-grasp method
due to excessive fingertip force and thumb torque. Third,
even for objects that can be successfully lifted by the slip-
grasp method, incorporating a vision-based force estimation
system allows for a reduction in the applied force (as shown
in Table 5), thereby optimizing the grasping process.

8.8 Vision-based HMI system latency

The image processing is running on a desktop server with an
E5-1260 CPU, and there is no GPU involved. The estimated
size, weight, and surface friction coefficient are sent to the
exoskeleton’s onboard microcontroller, which generates the
initial grasp force using IMU data and operates the exoskele-
ton. The computation time for processing a single image
is around 700ms. The processing time meets this applica-
tion’s requirements as only one image needs to go through
the complete processing per grasp. The time consumption
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Fig. 13 Demonstration of grasping daily used objects using vision-
based initial grasp force prediction method and slip-grasp method. A
Successfully grasp a 512g water bottle with vision system. B Failed to
grasp a 512g water bottle using the slip-graspmethod due to inadequate
thumb torque.C andD Successfully grasp an 188gwine glass with both

the vision system and the slip-grasp method. E Successfully grasp a 3g
plastic spoon with vision system. F Failed to grasp a 3g plastic spoon
using the slip-grasp method due to excessive force and torque.G andH
Successfully grasp a 48g metal spoon with both the vision system and
the slip-grasp method

Table 6 Inference speed of one 1280×760pixel image using the vision-
based HMI

Section Speed*(ms)

ARUCO marker detection 7

Object detection 470

Material classification 228

Size and weight estimation 3

Total 708

Speed*: the inference time is measured by averaging the inference time
of ten images on a E5-1260 CPU

for processing one image is shown in Table 6. While the
700ms delay is less than ideal, it does not present a signifi-
cant problem in our system. It is important to note that our
current system lacks a GPU, and the processing speed could
be readily enhanced by incorporating one.

9 Conclusion

This paper presented a novel vision-based HMI aimed at
estimating the initial grasp force required to manipulate a

target object using an automated exoskeleton glove designed
for patients with BPI.

The proposed approach employed object detection and
material classification techniques to predict the initial grasp
force, using information about the weight, size, and material
of the object. In the FPV Grasp dataset collected for vali-
dating the HMI system, the object size estimation yielded a
MAPE of 26.9%, while the object weight estimation exhib-
ited a MAPE of 59.8%. Despite the relatively high MAPE
for weight and size estimation, vision-based initial grasp
force estimation still yielded a significant result, aiding in
the grasping process.

Thevision-basedHMI successfully distinguishedbetween
different materials and accurately predicted the initial grasp
force for objects of varying weights. When integrated with
the slip-grasp method, the combined approach attained a
87.5% success rate, outperforming the standalone slip-grasp
method (71.9%). These results highlighted the importance of
estimating the initial grasp force to prevent slippage caused
by inadequate or excessive application of force and torque.

The proposed work can be enhanced in several ways.
Firstly, by expanding the close-view material dataset to
include pixel-wise labeling, it opens up the possibility
of end-to-end pixel-wise material segmentation. Secondly,
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incorporating image segmentation into the object detection
process can lead tomore accurate shapes and reduce errors in
size and weight estimation. Additionally, conducting clinical
experiments to test the proposed system could yield valuable
insights for further improvement.

In conclusion, the proposed vision-based HMI demon-
strated the potential to enhance the grasping capabilities of
an automated exoskeleton glove, contributing to improved
functionality and usability for patients with BPI. The find-
ings of this experiment pave theway for future advancements
in assistive technologies, facilitating more effective and reli-
able interactions between users and robotic systems.
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