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Abstract Kangaroo rat is a good representative for

general bipedalism with a serpentine tail. Modeling

and analyzing the kangaroo rat motion helps to

understand the serpentine tail functionalities in agile

motions of bipedal mobile platforms, and this under-

standing is expected to lay the foundation for the

future development of such robotic systems. This

paper analyzes the kangaroo rat motions through

dynamic modeling and control. The system dynamic

model is established using the inertia matrix method,

and two typical serpentine tail models are considered:

a continuum tail model where the tail is modeled as

several constant curvature arcs, and an articulated tail

model where the tail is discretized into rigid links.

Regularized contact model is used to compute the

ground reaction force (GRF). To automatically plan

the tail motion, numerical optimal control techniques

(i.e., direct collocation method) are utilized. Partial

feedback linearization is then used to track the

designed tail trajectory. Based on the formulated

dynamic model and motion controller, two represen-

tative tail functions (airborne righting and supporting)

were simulated and analyzed. The results validated the

proposed modeling and control framework and

showed the nontrivial functionalities of the serpentine

tail in helping the kangaroo rat to achieve agile

motions. Moreover, comparative studies on the two

tail models and the tail segmentations were performed

to analyze the model differences. The results demon-

strated that the articulated tail model is a good

approximation of the continuum tail model, and more

tail segments and links enhance the kangaroo rat’s

ability to deliberately adjust its motion.

Keywords Serpentine tail � Kangaroo rat � Dynamic

modeling � Dynamic analysis � Optimal control

1 Introduction

In recent years, inspired by the fascinating tail motions

in the animal kingdom [1–4], roboticists have consid-

ered augmenting mobile robots with a robotic tail, to

help the robot achieve enhanced locomotion perfor-

mance. These trials include both using pendulum

robotic tails [5–20] and serpentine robotic tails

[21–27]. Due to its limited shape configuration,

pendulum tails are usually designed for a specific

purpose, such as performing airborne righting tasks
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[6–9], maneuvering [11, 12], and improving vehicle

acceleration performance [13]. In comparison, ser-

pentine robotic tails usually have more degrees of

freedom (DOF) and thus have the benefits of being

dexterous and versatile. For instance, the serpentine

tail can usually carry out a range of tasks from

maneuvering to stabilization [28] using the same tail.

However, the tradeoff is that this kind of tail usually

requires a heavier actuation unit and a more complex

mechanical structure.

From a mechanics perspective, the tail functional-

ities could be summarized into two categories: static

and dynamic functions. The static functions of the tail

mean that the tail is only used to inject static forces

into the system. The system motion is governed by

statics, and only position information is used. Such

functions include adjusting the system center of mass

(COM), supporting the body, grasping, manipulation,

etc. The dynamic functions of the tail mean that the tail

is used to inject inertial forces into the system. The

system motion is governed by the full-level dynamics,

and kinematic information including acceleration is

necessary. Such functions include airborne righting,

maneuvering, stabilization, etc.

Kangaroo rat is an animal that relies heavily on its

tail to assist its agile motions. For instance, Fig. 1 shows

that a kangaroo rat flips over its body in the air using its

tail after being attacked by a rattlesnake [29]. Further

observations imply that kangaroo rats may use most of

the functionalities mentioned above, that is, using the

tail as an additional appendage (e.g., leg) to support its

locomotion on the ground, using the tail in the air to

change its torso orientation, and using the tail to adjust

the ground reaction force (GRF) during ground contact

events (indirectly affecting the locomotion). Therefore,

the kangaroo rat is thought to be a great benchmark

model to investigate the functions of a tail for bipedal

locomotion. This idea recently started attracting atten-

tion and a series of research efforts were carried out,

from both the biological side [30, 31] and the robotic

side [10, 32, 33]. However, the existing efforts on the

biological side mainly focus on data interpretation

using statistical analysis, and the efforts on the robotic

side mainly focus on using the pendulum tail abstrac-

tion. Both approaches use a simplified dynamic model,

which is either in 2D or using a single-segment single-

link tail model. This brings up an important missing part

for this research—a high-fidelity 3D dynamic model

that captures the serpentine nature of the tail.

Therefore, in this paper, we aim to investigate how

the kangaroo rat uses its serpentine tail to achieve agile

motions from a dynamics and control perspective, that

is, establishing a 3D dynamic model of the kangaroo

rat with a serpentine tail and analyzing the tail’s

functionalities with helping the kangaroo rat to

achieve agile motions. This investigation is expected

to provide a solid understanding (mechanically and

quantitatively) of the kangaroo rat motions and what

role the serpentine tail plays in achieving these

motions. These understandings could further benefit

Fig. 1 A kangaroo rat flips itself in the air by swinging its serpentine tail. Snapshots are captured from the supplementary video 1 in

[30], which is also available online at [29]
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the development and control of such robotic systems,

for instance, developing novel tailed biped robots for

executing highly agile motions (military technology)

or developing tail-assisted fast maneuvering tech-

niques for space robots (space technology). In control

theory, solving the unique kangaroo rat tail-assisted

locomotion problem could further enrich the existing

whole-body control theory.

The major contributions of this work are summa-

rized as follows. Firstly, a general 3D bipedal model

with multi-contact feet and a general serpentine tail is

established. Secondly, two representative and general

serpentine tail structures, namely the articulated tail

model and the continuum tail model, are formulated.

Thirdly, numerical optimal control methods (direct

collocation) are used to automatically plan the tail

motion, which allows incorporating advanced input

and state constraints. Fourthly, through the established

dynamic model and controller, agile motions, tail

functionalities, and tail model comparative studies of

the kangaroo rat are analyzed. Each of these four points

is proposed in the literature for the first time. The

combination of these four points provides a high-

fidelity kangaroo rat model and explains the serpentine

tail’s functionalities with assisting the kangaroo rat to

achieve agile motions from a mechanics perspective

for the first time.

The overview of the modeling and control

approaches in this work is shown in Fig. 2 where the

entire process consists of three parts: dynamic mod-

eling, motion planning, and simulation. The dynamic

modeling part establishes the equation of motion

(EOM) of a kangaroo rat model considering two types

of serpentine tail models and the ground contact

events. This model is used in both the motion planning

part and the simulation part. The difference is that in

motion planning, the dynamic model is used as path

constraints for the tail trajectory optimization tasks

while in simulation, the dynamic model is numerically

solved to verify the motion planning effectiveness. To

convert the designed trajectory to actual joint inputs, a

feedback-based trajectory tracking controller was

implemented in the simulation.

The following sections of this paper are organized

as follows. Section 2 formulates the dynamic model of

the kangaroo rat. Section 3 derives the motion plan-

ning algorithm and the trajectory tracking controller

for the serpentine tail motion control problem.

Section 4 implements the numerical experiments and

explores the serpentine tail functionalities in kangaroo

rat locomotion. Section 5 summarizes the main results

of this paper.

2 Dynamic modelling

The dynamic model of the kangaroo rat is shown in

Fig. 3 where the body is abstracted into an ellipsoid

Tail Trajectory 
Optimization

Dynamic 
Model

Motion GoalLeg Motion

Dynamic 
Model

Tail Trajectory 
Tracking

Motion Planning

Simulation

Continuum Tail

Articulated TailDynamic Modeling

Contact Model

feedback

Fig. 2 An overview of the modeling and control approaches in

this work
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Fig. 3 Kangaroo rat kinematic model. Note that the animal on

the top is for morphological reference only. It is a jerboa—a

different species with similar morphology and behaviors
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and the leg is modeled as a planar three-parallelogram

mechanism. The foot is modeled with a flat sole such

that it allows stable standing. The inertial frame

RS :¼ ðS;xs;ys;zsÞ is attached on the ground with zs
pointing vertically up and ys pointing forward. The

body-fixed frame of the torso RB :¼ ðB;xb;yb;zbÞ is

attached at the torso COM with its basis vector

aligning with the principal axes of the torso moment of

inertia (MOI). Note that the torso COM is not

necessarily located at the ellipsoid center or its focus,

but the MOI is always computed with respect to the

ellipsoid center.

The EOM is established using the inertia matrix

method in [34], as shown in Eq. (1). The leg inertial

loading is neglected due to its small influence

(lightweight legs) on the overall motion. However,

its kinematics is still needed to generate the GRF.

H€qþ C q; _qð Þ ¼ Jtasta þ Jf fc ð1Þ

where H is the system inertia matrix, C is the bias

force containing all the gravitational, centrifugal, and

Coriolis forces, sta is the actuation input from the tail,

fc is the GRF, Jta and Jf are the corresponding

Jacobians for the actuation and GRF, respectively,

q ¼ ½pTb /T
b qTt �

T
is the system generalized coordinates

where pb is the position of point B, /b ¼ ½/x /y /z�T

is the torso orientation, and qt is the generalized

coordinates that describe the tail configuration.

The serpentine tail consists of m serially connected

segments. Each segment can bend spatially (i.e.,

bending to left and right or bending up and down),

and is fully defined by these two mobilities. Therefore,

the tail has 2m generalized coordinates and the system

has d ¼ 6 þ 2m DOF. The components in Eq. (1) are

obtained as follows:

H ¼ mbJ
T
b;xJb;x þ JTb;xIbJb;x þ

Xm

i¼1
Hi ð2Þ

C ¼ mbJ
T
b;xgþ JTb;x exbIbxb þ ID tail; q; _q; 0ð Þ ð3Þ

where mb, Ib, Hi are the torso mass, torso MOI

(measured in the inertial frame), and the inertia matrix

for the i-th segment of the tail, respectively. Jb;x and

Jb;x are the trivial Jacobians for pb and /b, respec-

tively. g ¼ ½0 0 g�T is the negative gravitational

acceleration. xb ¼ _/b is the angular velocity of the

torso. The tilde above a vector indicates its skew-

symmetric expansion. The ‘‘ID(tail)’’ function

represents the inverse dynamics of the tail subsystem

that contains all the non-actuation loading (inertial,

gravitational, frictional, etc.):

ID tail;q; _q; €qð Þ ¼
Xm

i¼1
si ð4Þ

where si is the inertial loadings for the i-th tail

segment.

The critical kinematic and dynamic information

required by Eqs. (1)–(4) is presented in the following

subsections in detail. To compare different serpentine

tail structures, a continuum tail model and a discrete

tail model are formulated.

2.1 Leg kinematics

For simplicity, the leg mechanism is set to move only

in the plane that is parallel to the ybBzb plane, i.e.,

there is no abduction DOF in the leg. Due to the three-

parallelogram mechanism, all the hip (H), knee (K),

ankle (A), metatarsophalangeal (M), and toe (T)

positions in the leg plane could be described by two

hip angles cl and dl, where the subscript l ¼ f1; 2g
indicates the right (1) or the left (2) leg, respectively.

Therefore, the metatarsophalangeal and toe positions

are calculated using Eqs. (5)–(9), where the left

superscript is used to indicate the measuring frame

other than the inertial frame. Other subscripts are

labeled to indicate a point or a line segment. For

instance, pm;l stands for the position of point Ml, ph2m;l

means the vector from Hl to Ml, and Lh2d is the linkage

length from Hl to Dl.

pm;l ¼ pb þ pb2h;l þ ph2m;l ð5Þ

pt;l ¼ ph2m;l þ pm2t;l ð6Þ

bph2m;l ¼ Lh2d þ Lk2að Þuh clð Þ þ Ld2k þ La2mð Þuh dlð Þ
ð7Þ

bpm2t;l ¼ �Lm2tuh cl � dlð Þ ð8Þ

uh xð Þ ¼ ½0 cosðxÞ sinðxÞ�T ð9Þ

The velocities could be calculated by differentiat-

ing the above equations directly and the corresponding

Jacobians are obtained by factoring out the general-

ized velocity _q. Then, the generalized GRF is obtained

as
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Jf fc ¼
X2

l¼1
ðJm;lfm;l þ Jt;lf t;lÞ ð10Þ

2.2 Articulated tail model

The articulated tail assumes that each tail segment

consists of n serially connected links and adjacent

links are connected by universal joints. All joints have

the same rotation in the same segment. To compute the

kinematics of this tail, a similar approach as in [35] is

used. As shown in Fig. 4, the body-fixed frames are

defined as follows. Frame RJj :¼ ðJj;xj;yj;zjÞ is

attached to the j-th link and is located at the j-th joint

center Jj. yj points along with the link and to the tail

root direction. zj aligns with the yaw axis of the j-th

universal joint. Note that the first joint coincides with

the tail mounting point T .

With the above definitions, the orientation of each

link (Rj) could be obtained recursively, as shown in

Eq. (11) and (12) where Rx and Rz are the principal

rotation matrix functions with respect to the x-axis and

z-axis, respectively. ai and bi are the pitch and yaw

rotation angles for the universal joints in the i-th

segment, respectively. Therefore, the tail generalized

coordinates for the articulated tail case is

qt ¼ a1 b1 . . . am bm½ �T .

j�1Rj ¼ Rx aið ÞRz bið Þ; i� 1ð Þnþ 1� j� in ð11Þ

Rj ¼
Rb; j ¼ 0

Rj�1 � j�1 Rj; j[ 0

�
ð12Þ

The joint positions pj;jnt and the COM position

pj;com of each link could then be calculated recursively

too, as shown in Eqs. (13)–(15), where Lj2c and Lj2j are

the joint-to-COM and joint-to-joint distance,

respectively.

pj;com ¼ pj;jnt þ pj;j2c ð13Þ

pj;jnt ¼
pb þ pb2t; j ¼ 1

pj�1;jnt þ pj�1;j2j; j[ 1

�
ð14Þ

pj;j2c ¼ �Lj2cyj
pj;j2j ¼ �Lj2jyj

�
ð15Þ

The corresponding angular velocities, linear veloc-

ities, Jacobians, and accelerations are calculated by

differentiating the position relationships directly, as

outlined in Appendix A. Therefore, with the above

kinematic information, the segment inertia and non-

actuation loading could be computed as

Hi ¼
Xi�n

j¼ i�1ð Þnþ1

ðmatJ
T
j;comJj;com þ JTj;xIj;atJj;xÞ ð16Þ

si ¼
Xi�n

j¼ i�1ð Þnþ1

JTj;commat _vj;com þ g
� �

þ JTj;x Ij;at _xj þ exjIj;atxj

� �h i

ð17Þ

where mat and Ij;at are the mass and the MOI

(measured in the inertial frame) for the j-th link,

respectively. Note that Eq. (17) only accounts for the

inertial and gravitational loadings. The internal joint

frictions are neglected to simplify the modeling. The

reasoning for this is that previous modeling and

simulations [35, 38] showed that the internal joint

frictions mainly affect the control effort (requiring

larger motor torques) and do not change the overall

motion significantly. Since the focus of this paper is on

the overall motions instead of the joint torques, the

joint frictions were neglected for simplicity.

2.3 Continuum tail model

The continuum tail model assumes that each tail

segment is a non-extensible constant curvature rod and

there is no twist motion inside the rod. Mass is

uniformly distributed along the rod. Due to the results

in [36] that the angular kinetic energy constitutes only

5% of the total kinetic energy, the angular inertial

loading for an infinitesimal slice (referring to Fig. 5) is

neglected, i.e., the mass is assumed to concentrate on

the neutral line. Similar to the articulated tail model,

all frictions and elasticities are also neglected. Only

the inertial loading and the gravitational loading are

computed. Based on these assumptions, the shape of

T(J1)
y1

z1
x1

Yaw βi

Pitch αi

Segment 1

Segment i

Link j

Link 1

yj

zj
xj

J2

Cj

Jj

yj+1
zj+1xj+1

Jj+1Link j+1Jj

xj-1
zj

Fig. 4 Articulated tail model
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each tail segment is totally defined by two local

variables: the out-of-plane angle ui and the in-plane

angle hi. And the tail generalized coordinates are

qt ¼ u1 h1 . . . um hm½ �T . Figure 5 illustrates the kine-

matic configuration of the continuum tail model. Note

that since the tail is not extensible, hiri ¼ Lct where the

Lct is the segment length.

There are several existing methods to formulate the

continuum robot dynamics, such as the classic [37] or

the new [36] modal approaches. The main differences

between these methods are their kinematic represen-

tations, i.e., how to describe the position and orien-

tation of the slice x. We apply the same approach as in

[38] due to its advantage to represent the kinematic

integral explicitly. However, since the continuum tail

model is non-extensible and non-elastic, the formula-

tion is slightly modified. That is, the inertial matrix

and the non-actuation loading of the i-th segment are

computed as integrals along the neutral line:

Hi ¼ mct

Z 1

0

JTi;o;xJi;o;xdx ð18Þ

si ¼ mct

Z 1

0

JTi;o;xð _vi;o;x þ gÞdx ð19Þ

where mct is the segment mass, Ji;o;x is the Jacobian of

the slice center Oi;x, _vi;o;x is the acceleration of Oi;x,

and x is the local parametric variable. Note that

Eq. (19) neglects the angular inertial loading due to its

small contribution to the total inertial loading. This is

equivalent to concentrating the mass on the neutral

line.

With the constant curvature assumption, Eq. (18)

and (19) turn out to be integrable, i.e., the integral

variable x could be separated from the kinematic

terms. Therefore, expressing the Oi;x position as an

explicit function of x yields

pi;o;x ¼ pi;q þ sxai � cxbi ð20Þ

in which sx ¼ sinhix and cx ¼ coshix. pi;q, ai, and bi
are intermediate vectors defined by Eqs. (21)–(23).

pi;q ¼ pi;o þ bi ð21Þ

ai ¼ �riyi ð22Þ

bi ¼ riðsinuixi þ cosuiziÞ ð23Þ

The velocity and Jacobian of Oi;x are then obtained

by directly differentiating Eq. (20):

vi;o;x ¼ _pi;q þ sx _ai þ xcxai _hi � cx _bi þ xsxbi _hi ð24Þ

JTi;o;x ¼ JTi;q þ sxJ
T
i;a þ xcxJ

T
i;ha

T
i � cxJ

T
i;b þ xsxJ

T
i;hb

T
i

¼ JTi;v � f i;vðxÞ
ð25Þ

JTi;v ¼ ½ JTi;q JTi;a JTi;ha
T
i JTi;b JTi;hb

T
i � ð26Þ

f i;vðxÞ ¼ ½ 1 sx xcx �cx xsx �T ð27Þ

where Ji;q, Ji;a, Ji;b, and Ji;h are the corresponding

Jacobians for pi;q, ai, bi, and hi, respectively. In

Eq. (25), the Jacobian is written as a block-wise

matrix multiplication (denoted by ‘‘�’’) form such that

the integral terms are separated from the non-integral

terms. This form makes the expression concise and

facilitates the following integrations. Therefore, the

inertia matrix for the i-th segment could be evaluated

as

Hi ¼ mct

Z 1

0

JTi;v � f i;vðxÞf Ti;vðxÞ � Ji;vdx

¼ mctJ
T
i;v � Ei;v � Ji;v ð28Þ

where Ei;vðhiÞ ¼
R 1

0
f i;v xð Þf Ti;vðxÞdx is a precomputed

matrix that only depends on hi and its expression is

presented in Appendix B. Similarly, the acceleration

of Oi;x is obtained by differentiating Eq. (24):

T(O1)
yb

zbxb

y2 x2
z2

yi

zi
xi

O2 Oi
Segment 1

ri

xθi

Qi si

φi
Oi,x

Slice x

Segment i

zi+1
Oi+1

...

Neutral Line

yi+1

θi

Fig. 5 Continuum tail model
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_vi;o;x ¼ €pi;q þ sx€ai þ 2xcx _ai _hi þ xcxai€hi � x2sxai _h
2

i

� cx €bi þ 2xsx _bi _hi þ xsxbi€hi þ x2cxbi _h
2

i

ð29Þ

Adding up the gravitational acceleration and using

the block-wise matrix multiplication notation, the non-

actuation loading is computed as

si ¼ mct

Z 1

0

JTi;v � f i;vðxÞf i;aðxÞ � hi;vdx

¼ mctJ
T
i;v �Qi;v � hi;v ð30Þ

hTi;v ¼ ½€pTi;q þ gT €aTi _aTi
_hi a

T
i
€hi a

T
i
_h
2

i
€b
T

i
_b
T

i
_hi b

T
i
€hi b

T
i
_h
2

i �
ð31Þ

f i;a xð Þ ¼ ½1 sx 2xcx xcx � x2sx � cx 2xsx xsx x
2cx�
ð32Þ

where Qi;vðhiÞ ¼
R 1

0
f i;v xð Þf i;aðxÞdx is a precomputed

matrix that is only dependent on hi. The detailed

expression for this matrix is given in Appendix B.

The orientation and position of each segment frameP
Oi could be calculated recursively, as shown in

Eq. (33) and (34). The higher-order information

(velocities, Jacobians, and accelerations) could be

calculated by directly differentiating their position

relationships.

Riþ1 ¼ RiRy uið ÞRx �hið ÞRy �uið Þ ð33Þ

piþ1;o ¼ pi;o þ sinhiai þ ð1 � coshiÞbi ð34Þ

Moreover, since the above kinematic representation

is essentially a variant of the Frenet-Serret frame [37],

it is not able to handle the case when the curvature

equals zero, i.e., the segment becomes a straight line.

For such cases (e.g., when hi\10�6rad), the segment

dynamics are treated separately as a straight rigid link.

2.4 Ground contact model

The same ground contact model as in [39] is used,

which is a regularized compliant contact model [40]

that formulates the normal force as a nonlinear spring-

damper system and the friction force as a linear spring-

damper system. The friction force model obeys the

Coulomb friction law, which states that the quotient of

the friction force and the normal force cannot be

greater than the friction coefficient. Therefore, for

each contact point, the GRF is obtained as

fgrf ¼ fnk kzs þ fxk kxs þ fy
�� ��ys ð35Þ

fnk k ¼ maxfKnz
3=2 þ DnKnz

1=2 _z; 0g ð36Þ

fxk k ¼
l fnk k; Kf xþ DfKf _x[ l fnk k
Kf xþ DfKf _x; else

�l fnk k; Kf xþ DfKf _x\� l fnk k

8
<

:

ð37Þ

where z, Kn, and Dn are the penetration depth, ground

stiffness, and ground damping coefficient, respec-

tively. Kf , Df , x, and l are the friction spring stiffness,

friction spring damping coefficient, offset distance in

xs direction away from the first contact point, and

friction coefficient, respectively. fy
�� �� is computed the

same as the fxk k except replacing x with y.

The contact detection problem (computing the

contact points) for the legs and the articulated tail

are straightforward, which are just the foot points Ml,

Tl, Al, and the tail joint points Jj. The contact point

calculation for the continuum tail, however, requires

special treatments since it changes continuously as the

tail configuration changes. An easy way to find out

these points is to calculate the lowest point of each tail

segment, denoted as Ci;ct ¼ fOi;x : x 2 0; 1½ �
minimizes the z component of pi;o;xg. Note that x here

has the same sense as that in Sect. 2.3, instead of the x

in Eq. (39). The necessary condition for x to minimize

the z component of pi;o;x could be obtained by letting

the derivative of Eq. (20) with respect to x vanish,

which yields:

cxai;z þ sxbi;z ¼ 0 ! x ¼ atanð�ai;z=bi;zÞ=hi ð38Þ

where x is the optimal value of x, ai;z and bi;z are the z

component of ai and bi, respectively. Therefore, the

contact points Ci;ct could be determined as

Ci;ct ¼
Oi; atan �ai;z=bi;z

� �
� 0

Oi; �x ; else

Oiþ1; atan �ai;z=bi;z
� �

� hi

8
<

: ð39Þ

For the cases that x is undetermined (e.g., when the

bending plane of segment i is horizontal), x is set to

0.5. For the cases that the tail segment becomes a line

segment, the contact points are manually set as its two

endpoints.
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3 Tail motion control

Controlling the motion of a 3D biped with a multi-

segment serpentine tail is more challenging than a 2D

biped [5, 10, 33] or a 3D single body with a single-

segment single-link tail [7–9, 13, 32, 33] since the

traditional intuition-based tail motion planning and

control methods [5–20, 32, 33] are not applicable

anymore. To solve this problem, we propose to use the

numerical optimal control method [41] to automati-

cally synthesize the tail motion for the kangaroo rat

agile motions. The existing numerical optimal control

techniques could be roughly divided into two classes:

the indirect methods such as differential dynamic

programming (DDP) [42], and the direct methods such

as direct collocation [43] or orthogonal collocation

[44]. In this paper, we chose to use the direct

collocation method [43] due to its robustness for

high-dimensionality systems and its flexibility to

include advanced constraints (e.g., box constraints

for joint motion range and joint torque limit). The

motion planning will only focus on the airborne phase

since the tail motion in this phase is more challenging

to be planned manually. More importantly, contacts

are not involved in the airborne phase and thus the

system dynamics are smooth, which makes the

optimization process efficient and robust. After the

tail motion trajectory was generated, a partial feed-

back linearization (PFL) based controller [45] was

implemented to track the trajectory. This motion

control framework is illustrated in Fig. 6 where the

active tail motion control starts from a randomly

picked moment when the kangaroo rat is in the air and

ends until the moment before the kangaroo rat lands on

the ground. All the motions in other moments use a

passive tail controller (simple damping) for which the

details will be presented in Sect. 3.3.

3.1 Trajectory optimization through direct

collocation

The core idea of the direct collocation technique is to

treat both the system states and control inputs as

decision variables for the nonlinear programming

(NLP) problem [46, 47]. For the motion planning

problem of the kangaroo rat in the airborne phase, the

objective is to design appropriate tail motion profiles

qt;rðtÞ, _qt;rðtÞ and torque profile sta;rðtÞ such that the

kangaroo rat body could reach desired orientation

before landing. Using the direct collocation technique,

this problem could be formulated as an NLP problem:

minimize : ‘0ðtN ;q1; _q1; u1; qN; _qN; sta;NÞ þ
XN

k¼1

‘kðqk; _qk; sta;kÞ

ð40Þ

subject to : _qkþ1 � _qk þ
h

2
H�1

k ðCk � Jta;ksta;kÞ

þ h

2
H�1

kþ1ðCkþ1 � Jta;kþ1sta;kþ1Þ
¼ 0 ð41Þ

qkþ1 � qk �
h

2
ð _qk þ _qkþ1Þ ¼ 0 ð42Þ

fbc q1; _q1; u1; qN ; _qN ; sta;N
� �

� 0;

gpc qk; _qk; sta;k
� �

� 0; bc; pc 2 N
ð43Þ

Randomly Picked 
Start Moment

Active Tail Motion Planning 
and Tracking (PFL)

Passive Tail Motion 
Control (Damping) 

Jumping
Desired State for 

Landing

Fig. 6 Kangaroo rat tail

motion control framework

where the green dashed lines

indicate the passive tail

motion control phase, and

the red dashed lines indicate

the active tail motion control

phase
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where the decision variables are pd ¼ ftN ; q1; _q1; sta;
1; . . .; qN ; _qN; sta;Ng. ‘0 and ‘k are the boundary

objective and the path objective functions, respec-

tively. fbc and gpc are the boundary and path

constraints, respectively, including all the box con-

straints (e.g., joint motion range and joint torque limit)

and more complicated kinematic constraints (e.g.,

equality constraints for the final state). Note that the

dynamic constraints in Eqs. (41) and (42) do not

include the GRF term (referring to Eq. (1) to see the

difference) due to the airborne assumption. Moreover,

Eqs. (41) and (42) implement the trapezoidal quadra-

ture rule to enhance numerical stability. Other quadra-

ture rules such as the Hermite-Simpson rule could be

also used to increase the numerical integration accu-

racy with a cost of longer computation time [47].

3.2 Nontrivial optimization implementation

details

Since the system has d ¼ 6 þ 2m DOF and 2m inputs

(the leg inputs cl and dl are ignored since the leg

motions do not affect the airborne dynamics), the NLP

problem complexity could easily go up to hundreds of

the decision variables and involve highly nonlinear

constraints, which makes the solving process time-

consuming and susceptible to an infeasible local

minimum. To ease these issues, several special

optimization techniques are used.

The first technique is a warm-start technique, which

utilizes dynamic simulation to generate the initial

trajectory guess. This way, the initial guess always

satisfies the dynamics constraints in Eqs. (41) and

(42), which helps the NLP to converge faster. The

dynamic simulation is carried out by solving Eq. (1)

using the given boundary value q1 ¼ qðt1Þ and time

span ½t1; tN �. The tail joint torques are computed based

on a purely damping controller (Eq. (47)), which will

be detailed in the next section. The second technique is

to design the objectives or constraints according to the

simulation results. For instance, for the airborne

righting tasks, the boundary constraints fbc in

Eq. (43) are usually set to make the body vertically

up at the end of the trajectory, i.e., /xðtNÞ ¼ 0,

/yðtNÞ ¼ 0. However, the body pitch angle /x and roll

angle /y are both modulo 2p numbers. Therefore,

strictly driving the body orientation back to /x ¼ 0

and /y ¼ 0 is not necessary. Instead, depending on the

simulated results, /xðtNÞ and /yðtNÞ could be set as the

closest multiples of 2p to the end body orientation. For

instance, if the simulation shows that the body pitch

angle reaches 15 radians and the body roll angle

reaches - 5 radians at the end, /xðtNÞ and /yðtNÞ
constraints could be set to equal to 4p and �2p,

respectively. This technique takes advantage of the

existing system momentum and tends to make the

system perform minimal work to reach the desired

orientation.

3.3 Trajectory interpolation and joint-level

control

The obtained tail trajectory from the NLP is a table of

isolated values on collocation points. To construct a

continuous trajectory for joint-level control, piecewise

spline interpolation is utilized using the MATLAB

function spline. To track this tail trajectory in the

simulation, a PFL controller that was previously

proposed by the authors [45] is used. That is, the tail

control effort sta is calculated to just linearize part of

the system dynamics, which is, in this case, the

dynamics corresponding to the tail part of the gener-

alized coordinates qt. Therefore, to track the tail

trajectory qt;rðtÞ, the system output is constructed as

y ¼ qt � qt;rðtÞ ð44Þ

To linearize the system to asymptotically stabilize

this output, a spring-damper system that is known to be

stable is constructed as

€yþKd _yþKpy ¼ 0 ð45Þ

where Kd ¼ KdI2m�2m and Kp ¼ KpI2m�2m with

Kd;Kp [ 0 and I2m�2m 2 R2m�2m being the identity

matrix. Substituting Eq. (44) into Eq. (55), using a

selection matrix S 2 R2m�d such that qt ¼ Sq, and

using Eq. (1), Eq. (45) could be solved as

sta ¼ XþðSH�1Cþ €qt;r þKdð _qt;r � _qtÞ þKpðqt;r � qtÞÞ
ð46Þ

in which X ¼ SH�1JTta and Xþ is the Moore–Penrose

inverse of X. Again, the GRF term does not appear due

to the airborne assumption. It is worth noting that in

practice, we did not use the €qt;r term and it turned out

that the controller still worked well. It is also worth

noting that due to the coupled and highly nonlinear
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dynamics between the tail and the body, a simple

model-free proportional-derivative (PD) controller

turned out not to work well in this case, which is the

major reason that we chose to use PFL, which

empirically shows better tracking performances.

For the phase when the tail is not tracking a

prescribed trajectory, the tail joint controller is set to a

passive damping controller, which simply resists the

tail motion and purely consumes the system energy.

The control effort is calculated as

sta ¼ �KdmpI2m�2m _qt ð47Þ

4 Numerical experiments

All computations are carried out using MATLAB. The

simulation is performed using a variable step ordinary

differential equation (ODE) solver ode45 with an

absolute tolerance of 1e-6 and a relative tolerance of

1e-8 to guarantee the simulation accuracy. The NLP

problem for the tail trajectory optimization is solved

using the function fmincon with ‘‘interior-point’’

method. The computing environment consists of a

workstation with an AMD Ryzen 9 3900X 12 Core

CPU (3.793 GHz) and a MATLAB R2021b distribu-

tion running on Microsoft Windows 10 Education

operating system. All the model properties are sum-

marized in Table 1 where the critical kangaroo rat

parameters (body mass, tail mass, tail length) are taken

from the measurements in [31]. The detailed tail

parameters such as the segment length of the contin-

uum tail or the link mass of the articulated tail, are

calculated by evenly distributing the total tail proper-

ties onto each segment/link, depending on the actual

segment number m and link number n. For instance,

the link mass of the articulated tail is determined to be

mat ¼ tail mass=mn. The MOI of the body and each

link in the articulated tail model are estimated by

assuming that each rigid body is an ellipsoid. The

COM of each articulated tail link locates at the

geometric center of the link, i.e., Lj2j ¼ 2Lj2c. It is

worth noting that the friction coefficient l is set to 1 in

the airborne righting motion tests in Sects. 4.2 and 4.3

to guarantee a no-slip condition between the foot and

the ground during jumping. This value is later set to

0.5 in the tail-ground contact motion tests in Sect. 4.4

to allow slippage between the tail and the ground. This

change is accommodated to facilitate the numerical

computations without affecting the motion

conclusions.

Since this paper focuses on the tail behaviors, the

leg motion is planned manually, and only simple

trajectories are used. For instance, for the airborne

simulations, the leg motions are designed to be

cl ¼
7

6
p; dl

¼ max � 1

12
p� 70 t � tkickð Þ;� 5

12
p

� �
; t� tkick

ð48Þ

which keeps cl constant and rotates dl in a constant

speed from �15� to �75�. tkick is the moment to start

the leg motion and in this paper, all the simulations use

the same tkick ¼ 0:4s. This leg kicking motion drives

the kangaroo rat to jump to a height of around 0.6 m. It

is worth noting that for this kicking motion, the

kangaroo rat model uses its ankle (A) point and

metatarsophalangeal (M) point to push the ground,

instead of the toe (T) point. This is similar to the

jumping motion exhibited by the real kangaroo rat.

For better illustration, animations were created for

the simulations in this section, and they can be found

online at https://youtu.be/wy067QQ0Cvs.

Table 1 Kangaroo rat

model properties
Var Value Var Value Var Value

g 9.8 ms-2 Kn 1000 Nm-1 Kdmp 0.001

Lh2d 8 mm Dn 0.75 mb 105.72 g

Ld2k 24 mm Kf 600 Nm-1 bIb diag ð½672:2 363:9 727:9�Þ gcm2

Lk2a 32 mm Df 0.01 Tail Mass 3.51 g

La2m 35 mm l 1 Tail Length 194.66 mm

Lm2t 16 mm Kd 400 bpTb2t
½0�40:5 4:5� mm

dm 30� Kp 4e4 bpTb2h;l ½ð�1Þlþ1
22:5�18 11:25� mm
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4.1 Comparative study on tail models

This section investigates the performance difference

between the continuum tail model and the articulated

tail model. Since the fundamental difference between

these two models is that the articulated model

discretizes the continuum tail, this comparative study

aims to investigate the effects of the number of links

on the tail performance. Therefore, the tail segment

number is set to 1 (m ¼ 1), and standard airborne yaw

rotation motions are simulated. All other model

parameters are set to be the same. The tail trajectories

are planned so that the articulated tail has the same

COM angle as the continuum tail, as shown in Fig. 7.

This criterion was previously proposed by the authors

to compare the dynamic differences for different

robotic tail structures [35]. The tail COM angle hcom is

defined as the rotation angle of the line segment

connecting the tail COM and the tail mounting point T .

To compute the hcom of the continuum tail (which is an

arc), Eq. (86) in [35] is used, which gives

tan hcomð Þ ¼ h1 � sinh1

1 � cosh1

ð49Þ

The hcom trajectory is planned to be a simple point-

to-point motion from 0 radians to atanðp=2Þ radians

using cubic polynomial, which corresponds to h1 from

0� to 180�.
The comparison results are presented in Fig. 8

where the Fig. 8a shows the body yaw responses /z tð Þ
for the continuum tail model and the articulated tail

model (four links are used, i.e., n ¼ 4), respectively.

Figure 8b plots the trend of the body yaw angle

differences as the link number increases. From

Fig. 8b, it can be found that the overall model

difference is small (less than 0:5�) and this difference

approaches zero as more links are used for the

articulated model. The largest difference happens

when the link number is four. However, even for this

worst case, the absolute model difference is still small,

which can be also observed from Fig. 8a.

4.2 Airborne righting tests

From the results of Sect. 4.1, the dynamic difference

between the articulated tail model and the continuum

tail model is not significant, especially when the link

number of the articulated tail becomes large. There-

fore, for this section and the next section, the

experiments will only focus on the articulated tail

structure. This section aims to verify the developed

dynamic model and the tail motion controller, where

the tail trajectory is generated by the direct collocation

method in Sect. 3. The objective function and con-

straints settings are summarized as follows:

(1) ‘0 ¼ 0, ‘1 ¼ hsTta;1sta;1=2, ‘N ¼ hsTta;Nsta;N=2,

‘k ¼ hsTta;ksta;k (k ¼ 2; 3; . . .;N � 1) to mini-

mize the control effort over a given time span.

h ¼ tN=ðN � 1Þ is the step size.

(2) f1 ¼ q1 � qðt1Þ ¼ 0, f2 ¼ /b;N � /b;d;N ¼ 0,

f3 ¼ _/b;N ¼ 0 to start from a given initial state

qðt1Þ and reach a desired body orientation /b;d;N

with a zero body angular velocity.

(3) g1 ¼ qt;k � bt;lime2m � 0,

g2 ¼ �qt;k � bt;lime2m � 0,

g3 ¼ sta;k � bta;lime2m � 0,

g4 ¼ �sta;k � bta;lime2m � 0,

g5 ¼ ½t1 � tN tN � t1 � ts�T � 0 to add joint

motion limit (bt;lim ¼ 180�=mn), joint torque

limit (bta;lim ¼ 0:02Nm), and motion planning

time span ts [ 0. e2m is a column vector of ones

that has 2m elements.

The initial state qðt1Þ for the trajectory optimization

is selected at a random moment t1 after the kangaroo

rat leaves the ground, although this ‘‘random’’ selec-

tion has a prerequisite that it must guarantee that there

exists at least one feasible solution to the NLP

problem. For instance, if t1 is chosen to be too close

to tN , it is possible that there does not exist a feasible

tail trajectory that can drive the system to the desired

state, i.e., no matter how the tail rotates, the kangaroo

rat is not able to reach its desired posture in time. This

arbitrary selection of starting moment is meant to

show the effectiveness of the motion planning algo-

rithm on handling the airborne righting tasks for any

given state. For the experiments in this section, we

used a one-segment tail with three links per segment

(m ¼ 1, n ¼ 3), selected t1 ¼ 0:5s (0.1 s after the leg

yb xb

T θcom

Fig. 7 Tail trajectory setting for the comparative study
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kicking the ground), ts ¼ 0:58s (the moment just

before the landing), used a desired final posture of

/x ¼ 0, /y ¼ 0, and set a collocation rate of 100 Hz

(step size of 10 ms). The snapshots for the entire

jumping motion with active tail control are shown in

Fig. 9b and c where the dashed lines show the body

COM (point B) trajectories. To compare the tail

motion effects, a simulation for the same jumping

motion but without active tail motion control was also

conducted and included in Fig. 9a. The entire motion

in Fig. 9a was simulated using the full dynamics of

Eq. (1) and the tail controller of Eq. (47). In Fig. 9b,

the green segment (green dashed line) of the motion

was simulated using Eqs. (1) and (47), but the red

segment (red dashed line) was a direct plot of the NLP

results in Sect. 3.1, which used all the designed motion

information including both the body motion and the

tail motion. To verify that the designed motion was

actually feasible and can meet the desired goal, Fig. 9c

simulated the red part using Eq. (1) and the tail

controller in Eq. (46). Note the slight differences of

how Fig. 9b used the designed whole-body motion for

plotting while Fig. 9c used only the tail trajectory.

This is because in simulation, the body motion is the

under-actuated DOF and only the tail trajectories

could be properly controlled. It is also worth noting

that the tail contact model was not included for these

experiments and therefore the tail could penetrate the

ground in Fig. 9. Comparing Fig. 9a and c validates

the tail’s functionalities in helping the airborne

righting maneuvers of kangaroo rats. Comparing

Fig. 9b and c verifies the effectiveness of the motion

planning algorithms in Sect. 3.1 although only a

simple trapezoidal quadrature rule was used.

Figure 10 shows the time domain details for the

motions in Fig. 9, where the Fig. 10a plots the body

COM trajectory pbðtÞ (pb;x, pb;y, and pb;z are the x, y, z

components, respectively), Fig. 10b and c show the

body orientation trajectories, Fig. 10d plots the tail

joint trajectories, Fig. 10e plots the trajectory tracking

Fig. 9 Snapshots of a a simulated jumping motion without active tail control, b a designed whole-body motion using the proposed

motion planning algorithm, and c the simulated motion by tracking the designed tail motion

Fig. 8 Comparison results

for the continuum tail model

and the articulated tail

model: a the body yaw

motion responses /z tð Þ, and

b the final body yaw angle

differences for different link

number
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error of the tail joints e1;a ¼ a1 � a1;d and e1;b ¼
b1 � b1;d (a1;d and b1;d are the planned tail joint

trajectory from the NLP), Fig. 10(f) plots the planned

and simulated tail joint torques. Further calculation

shows that the optimal trajectory found by the motion

planning algorithm consumes 0.0165 Joule energy and

requires a peak power of 0.2699 Watt. The mean value

and standard deviation of the tail joint trajectory

tracking errors are -0.0012 rad and 0.0065 rad for e1;a,

-0.0003 rad and 0.0055 rad for e1;b.

According to Fig. 10a, the matching trend among

the three trails verifies the effectiveness of the motion

planning algorithm. It also implies that the tail motion

has marginal effects on the body COM motion.

However, Fig. 10b and c demonstrate the tail’s

usefulness in affecting the body’s orientation,

although the mismatch between the planned (blue

dot-dashed line) and simulated (green solid line) body

orientation trajectories reflect the accuracy limit of

using the trapezoidal quadrature rule to implement the

dynamics constraints. Figure 10d and e show the

effectiveness of the PFL controller for the tail’s joint-

level trajectory tracking control. Figure 10f first

verifies how the PFL controller can generate appro-

priate control effort. It also shows how the open-loop

motion planning algorithm can generate a similar

control effort as the closed-loop feedback controller.

To further investigate the numerical aspects (e.g.,

accuracy and efficiency) of the motion planning

algorithm, different collocation frequencies are used,

and the results are collected in Fig. 11. The dynamics

error is measured based on the distance between the

planned motion xnlp and the simulated motion xtrack
with the planned tail trajectory being tracked, which is

a L2-norm:

Dyn:Err: ¼ xnlpðtÞ � xtrackðtÞ
�� ��

2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ tN

t1

ðxnlp � xtrackÞTðxnlp � xtrackÞdt
s

ð50Þ

From the results, it can be found that increasing the

collocation frequency helps reduce the dynamics error

but increased computation time. However, when the

dynamics error is already reduced to a low level, this

trend does not continue ([ 100 Hz in Fig. 11). The

iteration number and objective value are shown not to

be significantly affected by the collocation frequency.

4.3 Comparative study on tail segmentation

After verifying the modeling and control frameworks

using a one-segment tail, this section investigates the

differences of the tail with multiple segments, that is,

how the tail’s number of segments affects the airborne

righting performance as well as the numerical aspects

of the trajectory optimization algorithm. For this

purpose, the total number of links of the articulated tail

is set to 6 so that it could be divided by the segment

numbers 1, 2, and 3. For instance, when the segment

number is set to m ¼ 2, the link number is set to n ¼ 3.

The remaining settings are the same as in Sect. 4.2

except for changing bt;lim ¼ 360�=mn to allow a larger

workspace of the tail to find feasible solutions for the

NLP problem.

Fig. 10 Detailed plots of

the planned motion (green

solid line), the simulated

motion with active tail

control (blue dot-dash line),

and the simulated motion

with passive tail control (red

dashed line)
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The resulting motion and trajectories are presented

in Figs. 12 and 13, where Fig. 13a–c plot the body

orientation trajectories /bðtÞ, Fig. 13d–f plot the tail

trajectories qtðtÞ, and Fig. 13g–i plot the tail joint

torque profiles staðtÞ. From the figures, it can be found

that more segments in the tail enable more delicate

control on the body movement and result in a smaller

control effort on the tail joints (see Fig. 13g–i). Other

statistical information of interest is collected in Table 2

where the tracking error is computed according to

maxfabsfe1;a; e1;b; . . .; e3;a; e3;bgg. Table 2 shows

similar observations as in the figures whereas more

segments in the tail tend to save energy and reduce

peak power by finding better tail trajectories (with

lower optimal value). However, this trend is not

significant between the two-segment case and the

three-segment case. It is worth noting that Table 2

shows a noticeable dynamics error (the larger the

error, the larger the difference between the planned

motion and the simulated motion). However, based on

the conclusions from Sect. 4.2, this issue could be

solved by increasing the collocation frequency.

4.4 Tail-ground contact tests

When the kangaroo rat is on the ground, the tail could

be used as an additional appendage to assist the

locomotion. This section investigates this static tail

functionality by conducting case studies of a jumping

motion and a self-recovery motion. Both the articu-

lated tail model and the continuum tail model are

included to evaluate the effectiveness of the contact

model established in Sect. 2.4. Due to the large

number of contact events, the non-stiff ODE solver

ode45 is replaced by a stiff ODE solver ode15s for

faster evaluation of the contact events. The friction

coefficient l is also adjusted to 0.5 to allow sliding

motion on the contact surface.

Fig. 12 Snapshots of the planned motion of a m ¼ 1; n ¼ 6, b m ¼ 2; n ¼ 3, and c m ¼ 3; n ¼ 2

Fig. 11 Computational

performance of the motion

planning algorithm
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4.4.1 Case study on jumping motion

Two sets of experiments were designed to compare the

difference between the two tail types: one jumping

motion using the articulated tail and one jumping

motion using the continuum tail. Both cases utilized

the tail contact event to stabilize locomotion. For

comparison purposes, one additional jumping motion

without using the tail for locomotion was also

performed. It is worth noting that other than changing

the ODE solver and the friction coefficient, the leg

trajectory component dlðtÞ was also changed to

rotating from �40� to �90� for kicking and then

rotating back to �30� for landing. Both tails used three

segments (m ¼ 3) and the articulated tail used four

links per segment (n ¼ 4).

The simulation results are demonstrated in Fig. 14,

where Fig. 14a–d show the jumping motion without

using the tail support on the ground, Fig. 14e–h show

the jumping motion using the articulated tail support

on the ground, and Fig. 14i–l show the jumping motion

using the continuum tail support on the ground. From

the case study results, it can be found that the tail-

ground contact model is able to generate realistic

contact phenomena, which enables future investiga-

tions on contact-rich motion planning and control of

the kangaroo rat model. In addition, the case study

shows that through environmental contacts, the tail

Fig. 13 Detailed plots of the planned motion for one-

(subfigures (a), (d), (g)), two- (subfigures (b), (e), (h)), and

three-segment (subfigures (c), (f), (i)) tail case. The line style

code for the subfigures a–c is that the ‘‘red solid’’, ‘‘green

dashed’’, and ‘‘blue dash-dotted’’ lines correspond to /x, /y, and

/z, respectively. The line style code for the subfigures d–f is that

the ‘‘red solid’’ line, ‘‘green dashed’’ line, ‘‘blue dash-dotted’’

line, ‘‘black dotted’’ line, ‘‘black solid’’ line with circle markers,

and the ‘‘black solid’’ line with square markers correspond to a1,

b1, a2, b2, a3, and b3, respectively. The line style code for the

subfigures g–i is that the ‘‘red solid’’ line, ‘‘green dashed’’ line,

‘‘blue dash-dotted’’ line, ‘‘black dotted’’ line, ‘‘black solid’’ line

with circle markers, and the ‘‘black solid’’ line with square

markers correspond to sta;a;1, sta;b;1, sta;a;2, sta;b;2, sta;a;3, and

sta;b;3, respectively

Table 2 Performance statistics for different number of segments

No. of

segments

No. of

iterations

Optimization time

(min)

Optimal

value

Energy

(J)

Peak power

(W)

Dynamics

error

Tracking error

(rad)

1 364 15 1.35e–5 0.0308 1.02 3.98 0.0848

2 646 39 5.81e–7 0.0152 0.208 8.21 0.391

3 1469 121 5.06e–7 0.0208 0.551 19.5 0.109
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becomes significantly useful in helping the kangaroo

rat locomotion.

4.4.2 Case study on self-recovery motion

For the self-recovery test, the robot was initialized

laying down on the ground. The tail motion was

manually planned to push the body to stand up. The

results are presented in Fig. 15 where Fig. 15a–d show

the snapshots of the self-recovery motion of the

kangaroo rat using the articulated tail and Fig. 15e–h

show the snapshots of the same motion using the

continuum tail. Note that due to the soft contact model,

the tail may penetrate the ground for transient motions.

From Fig. 15, the tail-ground contact models are

verified further, especially for the varying contact

point problem (Eqs. 38 and 39) of the continuum tail.

The importance of this case study is that it illustrates

how the tail could be used to help the manipulation

tasks of the kangaroo rat through tail-environment

contacts. In these scenarios, the serpentine tail struc-

ture helps to enlarge the tail workspace and enhance

the tail dexterity significantly, which is a fundamental

benefit in comparison with single-link tails.

4.5 Discussion

The tail controller in this paper mostly focuses on the

airborne righting motions, for which the dynamics are

continuous. In future work, we wish to extend the

work into the non-smooth domain, i.e., designing the

tail controller together with the leg motion planning,

which involves tail-ground contact and leg-ground

contact. Due to the rich contact type and large contact

number, the traditional method based on mode sched-

ule [48] is less attractive. To solve this problem,

through-contact trajectory optimization may be

required, such as those based on direct methods

[49, 50] and those based on indirect methods [51, 52].

This work was motivated by understanding the

tail’s functionalities on agile motions of the kangaroo

rat from dynamics and control perspectives. This

understanding, together with the modeling and control

framework developed in this paper, aims to lay the

foundation for further developments of agile biped

robots with a serpentine robotic tail. Therefore, one

important future work is to develop such a robotic

system that achieves the same level of agility and

dexterity as the kangaroo rat, which may have unique

applications as a highly agile terrestrial moving

platform.

Fig. 14 Jumping motion snapshots
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Although the proposed dynamic model computes

fast (less than 0.1 ms), the motion planning algorithm

takes a considerable amount of time (from several

minutes to a couple of hours) to converge. To mitigate

this drawback in the future, an analytical model with

automatic differentiation [53] may be used to fasten

the NLP solving process. Moreover, due to the

nonlinear nature of the system dynamics, the motion

planning algorithm is only able to find a local

minimum. To find the global minimum or a unique

solution for every motion planning, the model com-

plexity may need to be reduced so that the NLP

problem could be formulated as a convex program-

ming problem [54]. In addition, the more generic

techniques (e.g., genetic algorithm, Monte-Carlo

method) may also be used to find a global optimum

or a suboptimum at the cost of a longer computation

time. For the specific case in this paper, one practical

way is to generate more initial guesses spanning the

entire feasible region, and then use a small disturbance

to reinitiate the optimization process after finding a

local minimum. This technique may help to find a

better solution but global optimum is still not

guaranteed.

5 Conclusion

This work investigated the agile motions and tail

functionalities of the kangaroo rat from the perspec-

tive of dynamics and control. Two representative,

general serpentine tail models were proposed: one

articulated tail model and one continuum tail model.

The contact events among the feet, tail, and the ground

were modeled using a regularized compliant contact

model. To automatically design the tail motion, a

direct collocation-based numerical optimal control

method was utilized. The planned tail trajectories were

then tracked using a partial feedback linearization

controller. Using the established dynamic model and

control framework, various numerical experiments

were performed. A comparative study on the two

serpentine tail models was conducted first and the

results validated the common impression that the

articulated tail model approaches the continuum tail

model as the number of links increases. Two sets of

airborne righting tests were then performed, focusing

on verifying the dynamics and control framework and

investigating the differences between tail segmenta-

tions, respectively. To test the tail contact model and

explore the tail’s functionalities in supporting the

body, case studies on jumping and self-recovery

motions were conducted. The simulation results

demonstrated the unique functionalities of the serpen-

tine tail with assisting the kangaroo rat’s locomotion.
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Appendix A: Articulated tail kinematics

The velocities, Jacobians, acceleration, and MOI for

each link of the articulated tail model are computed

recursively using Eqs. (A1–A13). Eq. (A14) computes

the torso MOI. ux;y is an x-dimension unit column

vector with 1 on the y-th entry.

xj ¼
xb; j ¼ 0

xj�1 þ _aixj�1 þ _bizj; j[ 0

�
ðA1Þ

vj;com ¼ vj;jnt þ vj;j2c ðA2Þ

vj;jnt ¼
vb þ xb � pb2t; j ¼ 1

vj�1;jnt þ vj�1;j2j; j[ 1

�
ðA3Þ

vj;j2c ¼ xj � pj;j2c
vj;j2j ¼ xj � pj;j2j

�
ðA4Þ

Jj;x ¼ 03�3 I3�3 03�2m½ �; j ¼ 0

Jj�1;x þ xj�1u
T
d;2iþ5 þ zju

T
d;2iþ6; j[ 0

�

ðA5Þ

Jj;com ¼ Jj;jnt þ Jj;j2c ðA6Þ

Jj;jnt ¼
I3�3 �~pb2t 03�2m½ �; j ¼ 1

Jj�1;jnt þ Jj�1;j2j; j[ 1

�
ðA7Þ

Jj;j2c ¼ �~pj;j2cJj;x
Jj;j2j ¼ �~pj;j2jJj;x

�
ðA8Þ

_xj ¼
_xb; j ¼ 0

_xj�1 þ €aixj�1

þ _ai ~xj�1xj�1 þ €bizj þ _bi ~xjzj; j[ 0

8
<

: ðA9Þ

_vj;com ¼ _vj;jnt þ _vj;j2c ðA10Þ

_vj;jnt ¼ _vb þ e_xbpb2t þ ~x2
bpb2t; j ¼ 1

_vj�1;jnt þ _vj�1;j2j; j[ 1

�
ðA11Þ

_vj;j2c ¼ e_xjpj;j2c þ ~x2
j pj;j2c

_vj;j2j ¼ e_xjpj;j2j þ ~x2
j pj;j2j

(
ðA12Þ

Ij;at ¼ Rj
jIj;atR

T
j ðA13Þ

Ib ¼ Rb
bIbR

T
b ðA14Þ

Appendix B: Continuum tail kinematics

The detailed expression of matrix Ei;v is given as

follows where ch ¼ coshi, sh ¼ sinhi, c2h ¼ cos2hi,
s2h ¼ sin2hi. Since Ei;v is symmetric, only the upper

triangle elements are listed.

Ei;v 1; 1ð Þ ¼ 1

Ei;v 1; 2ð Þ ¼ ð1 � chÞ=hi

Ei;v 1; 3ð Þ ¼ ð�1 þ ch þ hishÞ=h2
i

Ei;v 1; 4ð Þ ¼ �sh=hi

Ei;v 1; 5ð Þ ¼ ð�hich þ shÞ=h2
i

Ei;v 2; 2ð Þ ¼ 1=2 � s2h=ð4hiÞ

Ei;v 2; 3ð Þ ¼ ð�2hic2h þ s2hÞ=ð8h2
i Þ

Ei;v 2; 4ð Þ ¼ ðc2h � 1Þ=ð4hiÞ

Ei;v 2; 5ð Þ ¼ ð1 � c2h � 2his2h þ 2h2
i Þ=ð8h

2
i Þ

Ei;v 3; 3ð Þ ¼ ð4h3
i þ 6hic2h þ ð6h2

i � 3Þs2hÞ=ð24h3
i Þ

Ei;v 3; 4ð Þ ¼ Ei;v 2; 5ð Þ � 1=2

Ei;v 3; 5ð Þ ¼ ð�1 þ ð1 � 2h2
i Þc2h þ 2his2hÞ=ð8h3

i Þ

Ei;v 4; 4ð Þ ¼ 1 � Ei;v 2; 2ð Þ

Ei;v 4; 5ð Þ ¼ �Ei;v 2; 3ð Þ

Ei;v 5; 5ð Þ ¼ ð4h3
i � 6hic2h þ ð3 � 6h2

i Þs2hÞ=ð24h3
i Þ

The elements in matrix Qi;v are given as:
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Qi;v 1; 1ð Þ ¼ 1

Qi;v 2; 1ð Þ ¼ Qi;v 1; 2ð Þ ¼ ð1 � chÞ=hi

Qi;v 3; 1ð Þ ¼ Qi;v 1; 4ð Þ ¼ ð�1 þ ch þ hishÞ=h2
i

Qi;v 4; 1ð Þ ¼ Qi;v 1; 6ð Þ ¼ �sh=hi

Qi;v 5; 1ð Þ ¼ Qi;v 1; 8ð Þ ¼ ð�hich þ shÞ=h2
i

Qi;v 2; 2ð Þ ¼ 1 �Qi;v 4; 6ð Þ ¼ 1=2 � s2h=ð4hiÞ

Qi;v 3; 2ð Þ ¼ ð�2hic2h þ s2hÞ=ð8h2
i Þ

Qi;v 3; 2ð Þ ¼ Qi;v 2; 4ð Þ ¼ �Qi;v 5; 6ð Þ ¼ �Qi;v 4; 8ð Þ

Qi;v 4; 2ð Þ ¼ Qi;v 2; 6ð Þ ¼ ðc2h � 1Þ=ð4hiÞ

Qi;v 5; 2ð Þ ¼ Qi;v 2; 8ð Þ
¼ ð1 � c2h � 2his2h þ 2h2

i Þ=ð8h
2
i Þ

Qi;v 3; 4ð Þ ¼ ð4h3
i þ 6hic2h þ ð6h2

i � 3Þs2hÞ=ð24h3
i Þ

Qi;v 3; 4ð Þ ¼ �Qi;v 4; 9ð Þ

Qi;v 4; 4ð Þ ¼ Qi;v 3; 6ð Þ ¼ Qi;v 5; 2ð Þ � 1=2

Qi;v 5; 4ð Þ ¼ ð�1 þ ð1 � 2h2
i Þc2h þ 2his2hÞ=ð8h3

i Þ

Qi;v 5; 4ð Þ ¼ Qi;v 4; 5ð Þ ¼ Qi;v 3; 8ð Þ ¼ Qi;v 2; 9ð Þ

Qi;v :; 3ð Þ ¼ 2Qi;v :; 4ð Þ

Qi;v 1; 5ð Þ ¼ ð2 þ h2
i � 2

� �
ch � 2hishÞ=h3

i

Qi;v 2; 5ð Þ ¼ �Qi;v 5; 8ð Þ ¼ Qi;v 3; 4ð Þ � 1=3

Qi;v 3; 5ð Þ ¼ ð2hið2h2
i � 3Þc2h � ð6h2

i � 3Þs2hÞ=ð16h4
i Þ

Qi;v 3; 5ð Þ ¼ �Qi;v 5; 9ð Þ

Qi;v 5; 5ð Þ ¼ ð3 þ 2hi 2h2
i � 3

� �
s2h þ ð6h2

i � 3Þc2h

� 2h4
i Þ=ð16h4

i Þ

Qi;v 5; 5ð Þ ¼ Qi;v 3; 9ð Þ � 1=4

Qi;v :; 7ð Þ ¼ 2Qi;v :; 8ð Þ

Qi;v 1; 9ð Þ ¼ ð h2
i � 2

� �
sh þ 2hichÞ=h3

i

The block-wise matrix multiplication notation ‘‘�’’

is introduced in Sect. 2.3 to express the sum of scalar

multiplications (linear combination of vectors). To

better present its operations, an example is given here.

X ¼ ½A3�2 B3�2 �

Y ¼ ½ a b �

where the subscripts of A, B denote their dimensions.

a and b are scalars. Then X � YT is evaluated as

X � YT ¼ A3�2 B3�2½ � � a b½ �T
¼ aA3�2 þ bB3�2

It has the similar transpose property as matrix

multiplication.

ðX � YTÞT ¼ Y � XT
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