
Hailin Ren
Robotics and Mechatronics Lab,

Department of Mechanical Engineering,
Virginia Tech,

Blacksburg, VA 24060
e-mail: hailin@vt.edu

Jingyuan Qi
Department of Physics,

Virginia Tech,
Blacksburg, VA 24060
e-mail: jingyq1@vt.edu

Pinhas Ben-Tzvi1

Robotics and Mechatronics Lab,
Department of Mechanical Engineering,

Virginia Tech,
Blacksburg, VA 24060
e-mail: bentzvi@vt.edu

Learning Flatness-Based
Controller Using Neural Networks
This paper presents a method to imitate flatness-based controllers for mobile robots using
neural networks. Sample case studies for a unicycle mobile robot and an unmanned aerial
vehicle (UAV) quadcopter are presented. The goals of this paper are to (1) train a neural
network to approximate a previously designed flatness-based controller, which takes in the
desired trajectories previously planned in the flatness space and robot states in a general
state space, and (2) present a dynamic training approach to learn models with high-dimen-
sional inputs. It is shown that a simple feedforward neural network could adequately
compute the highly nonlinear state variables transformation from general state space to
flatness space and replace the complicated designed heuristic to avoid singularities in
the control law. This paper also presents a new dynamic training method for models
with high-dimensional independent inputs, serving as a reference for learning models
with a multitude of inputs. Training procedures and simulations are presented to show
both the effectiveness of this novel training approach and the performance of the well-
trained neural network. [DOI: 10.1115/1.4046776]

Keywords: dynamics and control, machine learning, neural networks, nonlinear systems,
robotics

1 Introduction
Flat systems have gained popularity for analyzing and designing

controllers for nonlinear systems due to their advantages in trajec-
tory planning and tracking [1]. Flat outputs and their derivatives
can be used to express the states and inputs of the original system
or the extended system, simplifying the trajectory planning
problem to simple algebra [2,3]. With the benefits of using a trans-
formation based on the flatness property, a variety of interpolating
functions can be used to design the path in the flat output space.
This property attracts research in path planning and controllers
design for various under-actuated systems, such as unicycles
[4,5], quadcopters [6,7], and open chain manipulators [8].
In the last few decades, with the availability of larger datasets and

more powerful computation units, new machine learning techniques
have been developed to solve a wide range of problems, such as
human pose estimation [9], natural language processing [10], high-
level motion/primitive tasks planning [11], and others. Using artifi-
cial neural networks to imitate system models and learn suitable
controllers is also an active topic in the research community.
Inverse kinematics of a redundant manipulator are learned using
neural networks in real-time [12]. Three types of compensation
methods were proposed to improve the inverse kinematics-based
controller for a robot manipulator [13]. Direct online optimization
of modeling errors in dynamics is proposed to calculate the error
between the real model and the analytical model to improve the
control performance [14]. A closed-loop controller is then derived
to control a soft pneumatically actuated manipulator using rein-
forcement learning [15].
In this paper, we present methods to approximate flatness-based

controllers using artificial neural networks including two popular
case studies: a unicycle and a quadcopter. To deal with the high-
dimensional inputs of the flatness-based controller model, we devel-
oped a dynamic sampling method to generate data batches for
neural network training. Compared to using a static dataset, this
dynamic sampling method uses and re-uses the same memory
space periodically during the training process, thereby saving the
overall memory space occupied. The authors believe that this

type of dataset generation will benefit research in learning models
with high-dimensional inputs.

2 Preliminary Modeling Analysis
2.1 Kinematic Model of a Unicycle. Referring to a simple car

model with two coaxial wheels as shown in Fig. 1(a), two wheels
are driven independently by two motors. The inputs to the system
are the right and left wheel velocities, vr and vl, and the configura-
tion of the system can be fully described by the general coordinates
(x, y, ψ), which encapsulate the chassis center position and heading
angle. The system can be written in driftless affine-form as,

ẋ =
ẋ1
ẋ2
ẋ3

⎛
⎝

⎞
⎠ =

sin(x3)
cos(x3)

0

⎛
⎝

⎞
⎠

︸�����︷︷�����︸
g1(x)

u1 +
0
0
1

⎛
⎝

⎞
⎠

︸��︷︷��︸
g2(x)

u2 (1)

where x1, x2 stands for y and x positions, respectively, and x3 for the
heading. u1= vr+ vl/2 is the rate of heading, u2= vr− vl/d is the rate
of rotation, and d is the wheel separation distance. It’s easy to show
that the local accessibility distribution of the car system, 〈g1(x),
g2(x), [g1, g2](x)〉, is of full rank, where [·, ·] presents the Lie
bracket operation. The local accessibility provides this driftless
system with the necessary and sufficient conditions for controllabil-
ity. It can be easily checked that the model of unicycle system
Eq. (1) cannot be statically linearized. However, by extending the

Fig. 1 Kinematic model of robot platforms

1Corresponding author.
Manuscript received October 23, 2019; final manuscript received February 26,

2020; published online March 27, 2020. Assoc. Editor: G. M. Clayton.

ASME Letters in Dynamic Systems and Control APRIL 2021, Vol. 1 / 021003-1
Copyright © 2020 by ASME

mailto:hailin@vt.edu
mailto:jingyq1@vt.edu
mailto:bentzvi@vt.edu

system based on a new state (x4 = u1) while keeping others the same
(xi = xi, i = 1, 2, 3).
The extended system can be linearized to a new flat system and

can also be written in Brunovsky form with a feedback law given as,

v =
v1
v2

()
= ẍ1

ẍ2

()
=

sin(x3) x4cos(x3)
cos(x3) −x4sin(x3)

()
u1
u2

()
(2)

The system is now transformed via static feedback into a system
which, in suitable coordinates, is fully linear and controllable.
While adapting a classical polynomial control law for the new
input variable vwith disturbance compensation, the following equa-
tions can be obtained:

vi = ẍi + λ1 · e1i + λ2 · e2i + λ3 · e3i, i ∈ {1, 2} (3)

where e11 = ẋ1 − ẋ1d , e21 = x1 − x1d, e12 = ẋ2 − ẋ2d , e22 = x2 − x2d,
e31 =

x1 −

x1d , and e32 =

x2 −

x2d stand for the error signals.

x1d and ẋ1d represent the desired output signals, corresponding to
x1, ẋ1. The coefficients λi, i= 0, …, 5 are specified in Table 2.

2.2 Dynamic Model of a Quadcopter. A quadcopter that is
composed of four rotors is detailed in Fig. 1(b). Speeding up or
slowing down either rotor pair can control the Yaw angle ψ. The
Roll ϕ and Pitch angles θ allow the quadcopter to move in the Y-
and X-directions, respectively. The rotor is the primary source of
control and propulsion for the unmanned aerial vehicle
(UAV). Z–Y–X Euler angles (ψ, ϕ, θ) are applied with the condi-
tions (−π≤ψ< π) for yaw, (−π≤ϕ < π) for pitch, and (−π≤ θ < π)
for roll, respectively.
Using Newtonian laws about the center of mass, the dynamic

equations for the quadcopter are obtained:

mV̇0 =
∑

Fext, Jω̇ = −ω × Jω +
∑

Text (4)

where the symbol × is the usual vector product, m is the mass, and J
is the inertia matrix. The coordinate frame is attached to the
UAV body frame as shown in Fig. 1(b). The angular velocity ω=
(ωx, ωy, ωz)

T and angular acceleration α= (αx, αy, αz)
T of the

body frame with respect to frame B are functions of the first- and
second-time derivatives of the Euler angles (ψ̇ , θ̇, ϕ̇) and
(ψ̈ , θ̈, ϕ̈). The notations

∑
Fext,

∑
Text stand for the vector of

external forces and torques, respectively. They can be computed as,

∑
Fext =

Ax − (sψsϕ + cψcϕsθ)u1
Ay − (sψcϕsθ − cψsϕ)u1

Az + mg − cϕcθu1

⎛
⎝

⎞
⎠,

∑
Text =

Ap + u2d
Aq + u3d
Ar + u4

⎛
⎝

⎞
⎠

(5)

where (Ax, Ay, Az) and (Ap, Aq, Ar) are aerodynamic forces and
moments acting on the UAV. u1 is the resulting thrust of the four
rotors defined as u1= (F1+F2+F3+F4); u2 is the difference
of thrust between the left rotor and the right rotor defined as u2=
F4−F2; u3 is the difference of thrust between the back rotor and
the front rotor defined as u3=F3−F1; u4 is the difference of
torque between the two clockwise-turning rotors and the two
counterclockwise-turning rotors defined as u4=Cfm[(F1+F3)−
(F2+F4)], and Cfm is the force to moment scaling factor.
To avoid Lie transformation matrices singularity, we replace the

real control signals (u1, u2, u3, u4) with (u1, u2, u3, u4). u1 is delayed
by a double integrator, while the other control signals are unaltered
based on the following variable transformations.

u1 = ζ; ζ̇ = ξ; ξ̇ = u1; u2 = u2; u3 = u3; u4 = u4 (6)

The resulting system then can be described by state space equations
in the following form:

ṡ =f (s) +
∑4
i=1

gi(s)ui, y = h(s) (7)

where s = (x, y, z, ψ , ϕ, θ, ẋ, ẏ, ż, ζ, ξ, p, q, r), o= (x, y, z, ψ).
Details of the modeling can be found in Ref. [16].
The input–output decoupling problem is solvable for the nonlin-

ear system by means of static feedback, and the vector relative
degree r1, r2, r3, r4 is given by r1= r2= r3= 4; r4= 2. We choose
the flatness outputs as

o = [y1, y2, y3, y4]T = [x, y, z, ψ]T (8)

then obtain a feedback control law,

v = [yr11 , y
r2
2 , y

r3
3 , y

r4
4]

T = b(x) + Δ(x)u (9)

where v represents the new input control signals. The matrix Δ(x) is
non-singular everywhere in the region ζ≠ 0, −π/2 < θ< π/2,− π/2 <
ϕ< π/2. Therefore, the input–output decoupling problem is solvable
for our system by means of a control law in the form of

u = −Δ−1(s)b(s) + Δ−1(s)v (10)

The system can be transformed via static feedback into a system
which, in suitable coordinates, is fully linear and controllable.
While adapting a classical polynomial control law for the new
input variable v with disturbance compensation, the following set
of equations can be obtained:

v1 = x(4)d − λ3 e
…
11 − λ2ë11 − λ1ė11 − λ0e11

v2 = y(4)d − λ3 e
…
12 − λ2ë12 − λ1ė12 − λ0e12

v3 = z(4)d − λ3 e
…
13 − λ2ë13 − λ1ė13 − λ0e13

v4 = ψ̈d − λ5ė5 − λ4e5

(11)

where xd, yd, zd, ψd represent the desired output signals, cor-
responding to x, y, z, ψ, respectively, and the error signals e11=
x0− x0d, e12= y0− y0d, e13= z0− z0d, and e5=ψ−ψd. The coeffi-
cients λi, i= 0, …, 5 are specified in Table 2. The mass properties
of the quadcopter in our case study are chosen as shown in
Table 1. Table 2 outlines the controller parameters used in the
unicycle controller and the quadcopter controller. In the quad-
copter control, only the body positions x, y, z are of interest,
and the control parameters of the yaw control are all set to
zero, λ4= λ5= 0.

Table 1 Mass properties of the quadcopter

Parameter Description Value Units

Gravity g 9.81 (m/s2)
Quadcopter diameter d 0.45 (m)
Mass m 0.468 (Kg)
Quadcopter inertia Ix,y,z 4.9 · 10−3 (Kg · m2)

Table 2 Controller parameters for the unicycle and quadcopter

λ0 λ1 λ2 λ3

Unicycle N/A 0.085 0.0025 0.0001
Quadcopter 0.0025 0.0025 1.0000 0.0100

021003-2 / Vol. 1, APRIL 2021 Transactions of the ASME

3 Designing Flatness-Based Controller
3.1 Dynamic Sampling Approach. Generalization over the

entire input space is one of the principles to estimate the perfor-
mance of the trained neural network in machine learning. One
way to achieve generalization is to create a large enough dataset
that covers the entire input space, while the other is to split the
dataset into a training set and a validation set. The former ensures
generalization, but is computationally expensive, especially when
applied to problems with high-input dimension, and is often infea-
sible in continuous input problems [17]. The latter helps avoid over-
training in the subset, but is prone to fail when the dataset is not
large enough or only partially covers the input space [18].
To deal with the proposed high-dimensional continuous input

problems, we propose a dynamic sampling approach that margin-
ally splits the entire workspace into a training set and a validation
set. For a problem with n dimension inputs, x= [x1, x2,…, xn],
with their lower boundaries xli and upper boundaries xui . Dis-
cretization is applied to each input xi uniformly into ni bins with a
fixed interval δi for xi. The dataset is now converted to a finite set
Xdata = {[x1, x2, . . . , xn]}, xi ∈ {xli, x

l
i + δi, xli + 2δi, . . . , xui }. The

size of the dataset Xdata increases dramatically when the input
dimension increases and when the discretization becomes denser.
Instead of storing the whole dataset, only the relatively smaller
set, the validation dataset Xvalid is stored during the training
process. To recover the continuous input space, sampling is per-
formed based on the discrete data using a predefined distribution.
The training procedure with dynamic sampling approach is
described in the form of following pseudocode:

procedure Training Network
({xli}, {x

u
i }, ni)

1: Obtain discretization interval δi for xi
2: Randomly generate validation set Xvalid

3: for each training epoch, i do
4: for each training batch, j do
5: Generate discrete training set xdbatch ∈ {x|x ∈ Xdata − Xvalid} based
on {xli}, {xui }
6: Generate continuous training set xcbatch on the distribution over
xdbatch
7: Training neural network using xcbatch
8: end for
9: end for

Here, we applied i.i.d Gaussian sampling to the selected discrete
training set to recover to continuous space xcbatch ∼ p(xdbatch|{δi}).
For data along each dimension, the selected discrete value is used
as the mean value μ= xd, while the standard deviation is selected
to be the discretization interval σ= δ. The generated training data
along each dimension obeys Gaussian distribution xc ∼ N (xd, δ).
To avoid overfitting on any specific trajectory, the boundaries of
the inputs {xli, x

u
i } were provided by generating random trajectories

using patterns such as a circle, a square, and a line. These input
domains were then discretized and divided into training and valida-
tion datasets. The discretized datasets were only used in the training
process, while the final deployment of the well-trained neural
network does not require them.

3.2 Neural Network Design and Training. Neural networks
are widely used to better approximate highly nonlinear models or
models with uncertainty to increase the performance and stability
of controllers. To approximate the flatness-based controller of the
unicycle and the quadcopter, multilayer perceptron neural
network is used. The proposed neural network consists of the
fully connected neurons in each layer with linear activation function
in all neurons. The neural network is built using Keras [19] with
TensorFlow [20] as the backend. Hyperopt [21] is used to tune
the hyperparameters of the neural network including number of

layers nl, number of neurons in each layer nn, activation functions
used for neurons in each layer except the final output layer fa, and
the parameters for the activation if needed fp. Details of the
choices and selected choices of the hyperparameters are presented
in Table 3. The proposed neural network consists of five layers
with 512 neurons in each layer. An activation function in each
neuron is selected to be Leaky ReLU [22] with α= 0.5 for the
optimal performance.
Based on control laws in Eqs. (2) and (3) for the unicycle and

Eqs. (10) and (11) for the quadcoper, the neural network takes in
the error signals and states and outputs the control signals for the
model. We define our objective function to minimize the weighted
loss function based on the order of magnitude of our controller
outputs:

min
Θ

L =
∑n
i=1

ωi‖ui − uΘi ‖2 (12)

where Θ represents the trainable parameters of the neural network,
ωi is the weight for the loss of the ith outputs, ui is the output value
from the flatness-based controller and is used as the ground truth,
while uΘi is the estimated output from the neural network. For the
unicycle controller, n= 2 outputs are designed in the neural
network with the loss weights ω1=ω2= 1, while the neural
network of the quadcopter controller generates n= 4 outputs with
loss weights, as shown in Table 4. The training process includes
100 training epochs. Within each training epoch, 1000 training
batches are performed, followed by validation using 100 batches
of data. Weighted root-mean-square error (WRMSE) is used in
the validation process:

WRMSE =

���������������������∑n
i=1

ωi(ui − uΘi)
2
/
n

√
(13)

Figure 2 shows the training processes of flatness-based control-
lers for the unicycle and the quadcopter. It can be seen that the val-
idation loss decreases as the training process progresses. It can be
seen that the validation error, WRMSE, converges to approximately
4 × 10−3 for the unicycle model and approximately 0.1 for the quad-
copter model.

4 Validation of Proposed Approach
To evaluate the performance of the well-trained controller using

neural network in real applications, we compared our trained con-
troller to the mathematical model-based controller in three different
motions. For the unicycle, point-to-point, square, and circle motions
are performed. The quadcopter performs similar motions in 3D with
various vertical heights. The simulation was performed using

Table 3 Hyperparameters tuning for neural network

Parameters Choices Selected

nl [4, 5, 6, 7, 8] 5
nn [128, 256, 512, 1024] 512
fa [“ReLU,” “Sigmoid,” “Leaky ReLU”] “Leaky ReLU”
fp [0.1, 0.3, 0.4, 0.5, 0.7, 0.9] 0.5

Table 4 Loss weights used for the optimization

ωi u1 u2 u3 u4

Unicycle 1 1 N/A N/A
Quadcopter 1000 1,000,000 100,000 100,000,000

ASME Letters in Dynamic Systems and Control APRIL 2021, Vol. 1 / 021003-3

Simulink [23] as shown in Fig. 3. All trajectories are generated
using the trajectory planner. The desired trajectories are then sent
to the controller, which could be either the well-trained neural
network controller or the flatness-based controller that uses an
explicit mathematical model. The simulated model uses controller
outputs for its calculations.

4.1 Trajectory Planner. Given the diffeomorphism, a
point-to-point motion planning and tracking control can be
designed in a flatness workspace. For example in the unicycle
problem, given the terminal conditions in the Cartesian
coordinates at both start time t0 and final time tf,
{xi(t), ẋi(t); i ∈ {1, 2, 3}, t ∈ {t0, tf }}, the terminal conditions can
be transformed to the corresponding terminal conditions in the flat-
ness workspace {xi(t), ẋi(t), ẍi(t); i ∈ {1, 2}, t ∈ {t0, tf }}. To
satisfy these six terminal conditions, we choose three types of func-
tions as trajectories for xi(t); i ∈ {1, 2}: fifth-order polynomials,
trigonometric functions, and piecewise functions. For fifth-order
polynomials, we used the following functions:

xi(t) = a5t
5 + a4t

4 + a3t
3 + a2t

2 + a1t + a0 i = {1, 2} (14)

For trigonometric functions, we choose following functions:

x1(t) = r · cos(2π · t/T), x2(t) = r · sin(2π · t/T) (15)

where r is the radius of the circle and T is the period in which the
unicycle runs around the circle. The desired trajectory is a circle

that starts from (10,0) at the top, running clockwise with radius
10 m, all the way back to (10,0). In the simulation, we choose the
real initial point to be (−0.5, 8) to test the convergence.
We choose the following formula for our piecewise function:

xi(t) = a5jt
5 + a4jt

4 + a3jt
3 + a2jt

2 + a1jt + a0j

Tj < t ≤ ti+1, i = {1, 2}, j = {1, 2, . . . , 5}
(16)

The desired trajectory (x1(t), x2(t)) is a square, going from (0, 0)
to (0, 24), then to (24, 24), then (24, 0), and finally back to (0, 0). In
the simulation, we choose the real initial point at (−2, 2) to test
convergence.
A similar approach was used in the quadcopter process. We

choose the same three types of trajectory functions that were used
in the unicycle model. For the fifth-order polynomials, we choose
the same function as Eq. (14). For trigonometric functions of the
quadcopter, we appended one more function to Eq. (15) to accom-
modate for the motion in the Z-direction:

x3(t) = −1 − t/10 (17)

where x3 is the position along the Z-direction representing height.
The desired trajectory, (x1(t), x2(t), x3(t)), represents a circle, that
starts from (0, 15, −1) at the top, running clockwise with radius
10 m all the way to (0, 15, −1− 10/t). The quadcopter simulta-
neously decreases its height at a constant rate. In the simulation,
we choose the real initial point at (1,2,3) to test convergence. Equa-
tion (16) is used as a piecewise function. The desired trajectory
takes the form of a square going from (0,0,0) to (45,0,55), then to
(45,45,0), then (0,45,55), and finally back to (0,0,0). In the simula-
tion, we choose the real initial point to be (1,2,3) to test the
convergence.

4.2 Trajectory Tracking Performance. Three motions of the
unicycle were performed and compared in Figs. 4(a)–4(c) while
these of the quadcoper are presented in Figs. 4(d)–4(e). One of
the most straightforward measures of controller performance is
evaluating the average deviation from the desired trajectory over
the whole tracking process, using root-mean-square error (RMSE),

RMSE =
∑n
i=1

‖fi − gi‖2 (18)

where fi and gi are the two compared trajectories at timestep i.
Another way to measure controller performance is to capture the
maximum “overshoot” during the tracking process, using the
maximum absolute deviation values,

MAD =max ‖fi − gi‖2 (19)

where fi and gi are the two compared trajectories at timestep i.
Table 5 shows the performance criteria based on the three
motions. It can be seen that the neural network-based controller
obtained similar overall performance compared with the mathemat-
ical model-based controller. The slightly increased tracking error
obtained from the neural network results is from the training
error. To validate the proposed method, the same hyperparameters,
instead of the best hyperparameters for individual cases, were
selected for both the unicycle and the quadcopter cases, which led
to the different tracking performance. For example, larger control
inputs were applied in most unicycle cases that led to larger tracking
errors. In all the tracking cases, the neural network-based controller
followed the desired trajectories with slight differences compared
with the original mathematical model-based controllers. These
tracking performances successfully validated the proposed
dynamic sampling method.

Fig. 2 Training process of (a) the kinematic model of the unicy-
cle and (b) the dynamic model of the quadcopter

Fig. 3 Simulation system for the unicycle and the quadcopter

021003-4 / Vol. 1, APRIL 2021 Transactions of the ASME

5 Conclusion and Future Work
In this work, flatness-based controllers were accurately approxi-

mated using neural networks. Two case studies were presented,
including a kinematic model for a unicycle and a dynamic model
for a quadcopter. A dynamic sampling method was proposed to
avoid large memory allocation during the training for problems
with high-dimensional input. A well-trained model was simulated
using three different motions, and the imitating performance of
our neural network controller was quantified in comparison to a
mathematical model-based controller. It was shown that the
neural network-based controller was able to emulate two complex
nonlinear controllers. The proposed dynamic sampling method
was also useful for training high-input dimension neural networks
with ground truth modeling.
Future work involves training the neural network controller using

real-world data to include the uncertainty in mathematical modeling
to make it more robust and stable. Neural network architectures
need to be improved to perform adequate learning with limited real-
world data, which is expensive to collect.

Acknowledgment
The authors would like to gratefully acknowledge the support of

NVIDIA Corporation with the donation of the Titan Xp GPU used
for this research.

References
[1] Sira-Ramírez, H., and Agrawal, S., 2004,Differentially Flat Systems, Vol. 5, CRC

Press, Boca Raton, FL.
[2] Francisco, S., Murray, R. M., Rathinam, M., and Sluis, W., 1995, “Differential

Flatness of Mechanical Control Systems: A Catalog of Prototype Systems,”
Proceedings of the 1995 ASME International Congress and Exposition, San
Francisco, CA, Nov. 12–17, ASME.

[3] Soheil-Hamedani, M., Zandi, M., Gavagsaz-Ghoachani, R., Nahid-Mobarakeh,
B., and Pierfederici, S., 2016, “Flatness-Based Control Method: A Review of
Its Applications to Power Systems,” 2016 7th Power Electronics and Drive
Systems Technologies Conference (PEDSTC), Tehran, Iran, Feb. 16–18, IEEE,
pp. 547–552.

[4] Tang, C. P., 2009, “Differential Flatness-Based Kinematic and Dynamic
Control of a Differentially Driven Wheeled Mobile Robot,” 2009 IEEE
International Conference on Robotics and Biomimetics (ROBIO), Guilin,
China, Dec. 19–23, IEEE, pp. 2267–2272.

[5] De Luca, A., Oriolo, G., and Samson, C., 1998, “Feedback Control of a
Nonholonomic Car-Like Robot,” Robot Motion Planning and Control,
Springer-Verlag, Berlin, pp. 171–253.

[6] Poultney, A., Kennedy, C., Clayton, G., and Ashrafiuon, H., 2018, “Robust
Tracking Control of Quadrotors Based on Differential Flatness: Simulations
and Experiments,” IEEE/ASME Trans. Mechatronics, 23(3), pp. 1126–1137.

[7] Cowling, I. D., Yakimenko, O. A., Whidborne, J. F., and Cooke, A. K., 2007, “A
Prototype of An Autonomous Controller for a Quadrotor UAV,” 2007 European
Control Conference (ECC), Kos, Greece, July 2–5, IEEE, pp. 4001–4008.

[8] Agrawal, S., and Sangwan, V., 2008, “Differentially Flat Designs of Underactu-
ated Open-Chain Planar Robots,” IEEE Trans. Rob., 24(6), pp. 1445–1451.

[9] Ren, H., Kumar, A., Wang, X., and Ben-Tzvi, P., 2018, “Parallel Deep Learning
Ensembles for Human Pose Estimation,” Dynamic Systems and Control
Conference, Atlanta, GA, Sept. 30–Oct. 3, ASME, p. V001T07A005.

[10] Young, T., Hazarika, D., Poria, S., and Cambria, E., 2018, “Recent Trends in
Deep Learning Based Natural Language Processing [Review Article],” IEEE
Comput. Intell. Mag., 13(3), pp. 55–75.

[11] Riedmiller, M., Hafner, R., Lampe, T., Neunert, M., Degrave, J., Van de Wiele,
T., Mnih, V., Heess, N., and Springenberg, J. T., 2018, “Learning by Playing -
Solving Sparse Reward Tasks From Scratch,” Proceedings of Machine
Learning Research, Stockholmsmässan, Stockholm, Sweden, July 10–15,
PMLR, pp. 4344–4353.

[12] Toshani, H., and Farrokhi, M., 2014, “Real-Time Inverse Kinematics of
Redundant Manipulators Using Neural Networks and Quadratic Programming:
A Lyapunov-based Approach,” Rob. Autonomous Syst., 62(6), pp. 766–781.

Fig. 4 Point-to-point, Square and Circle motion for (a)–(c) the unicycle and (d)–(f) the Quadcopter

Table 5 Performance on different motions

matha nnb

RMSE MAD RMSE MAD

Unicycle
Linear 2.407 2.007 3.035 2.801
Square 1.014 0.689 1.970 1.665
Circle 0.899 0.700 1.346 1.208

math cnn

RMSE MAD RMSE MAD

Quadcopter
Linear 1.834 1.345 1.836 1.356
Square 1.320 2.393 1.803 3.255
Circle 4.825 9.448 4.754 9.290

amath: mathematical model-based controller.
bnn: neural network-based controller.

ASME Letters in Dynamic Systems and Control APRIL 2021, Vol. 1 / 021003-5

http://dx.doi.org/10.1109/TMECH.2018.2820426
http://dx.doi.org/10.1109/TRO.2008.2006243
http://dx.doi.org/10.1109/MCI.2018.2840738
http://dx.doi.org/10.1109/MCI.2018.2840738
http://dx.doi.org/10.1016/j.robot.2014.02.005

[13] Pane, Y. P., Nageshrao, S. P., Kober, J., and Babuška, R., 2019, “Reinforcement
Learning Based Compensation Methods for Robot Manipulators,” Eng. Appl.
Artif. Intell., 78(2), pp. 236–247.

[14] Ratliff, N.,Meier, F., Kappler, D., and Schaal, S., 2016, “DOOMED:Direct Online
Optimization of Modeling Errors in Dynamics,” Big Data, 4(4), pp. 253–268.

[15] Thuruthel, T. G., Falotico, E., Renda, F., and Laschi, C., 2019, “Model-Based
Reinforcement Learning for Closed-Loop Dynamic Control of Soft Robotic
Manipulators,” IEEE Trans. Rob., 35(1), pp. 124–134.

[16] Faessler, M., Franchi, A., and Scaramuzza, D., 2018, “Differential Flatness of
Quadrotor Dynamics Subject to Rotor Drag for Accurate Tracking of
High-Speed Trajectories,” IEEE Rob. Autom. Lett., 3(2), pp. 620–626.

[17] Watkins, C. J. C. H., 1989, “Learning From Delayed Rewards,” Ph.D. thesis,
King’s College, Cambridge, UK.

[18] Reitermanová, Z., “Data Splitting,” WDS’s 10 Proceedings of Contributed
Papers, pp. 31–36.

[19] Chollet, F., et al., 2015, “Keras.”

[20] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.
S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M.,
Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C.,
Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P.,
Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P.,
Wattenberg, M., Wicke, M., Yu, Y. and Zheng, X., 2015, “TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems,” tensorflow.org

[21] Bergstra, J., Yamins, D., and Cox, D. D., 2013, “Making a Science of Model
Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision
Architectures,” 30th International Conference on International Conference on
Machine Learning, Vol. 28, pp. I–115–I–123.

[22] Maas, A. L., Hannun, A. Y., and Ng, A. Y., 2013, “Rectifier Nonlinearities
Improve Neural Network Acoustic Models,” 30th International Conference on
Machine Learning, June 16–21, Atlanta, GA, ICML.

[23] MathWorks. Simulink - Simulation and Model-Based Design - MATLAB.

021003-6 / Vol. 1, APRIL 2021 Transactions of the ASME

http://dx.doi.org/10.1016/j.engappai.2018.11.006
http://dx.doi.org/10.1016/j.engappai.2018.11.006
http://dx.doi.org/10.1089/big.2016.0041
http://dx.doi.org/10.1109/TRO.2018.2878318
http://dx.doi.org/10.1109/LRA.2017.2776353
tensorflow.org

	1 Introduction
	2 Preliminary Modeling Analysis
	2.1 Kinematic Model of a Unicycle
	2.2 Dynamic Model of a Quadcopter

	3 Designing Flatness-Based Controller
	3.1 Dynamic Sampling Approach
	3.2 Neural Network Design and Training

	4 Validation of Proposed Approach
	4.1 Trajectory Planner
	4.2 Trajectory Tracking Performance

	5 Conclusion and Future Work
	 Acknowledgment
	 References

