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Cricothyrotomy serves as one of the most efficient surgical inter-
ventions when a patient is enduring a can’t intubate can’t oxygen-
ate (CICO) scenario. However, medical background and
professional training are required for the provider to establish a
patent airway successfully. Motivated by robotics applications in
search and rescue, this work focuses on applying artificial intelli-
gence techniques to the precise localization of the incision site,
the cricothyroid membrane (CTM), of the injured using an RGB-
D camera, and the manipulation of a robot arm with reinforce-
ment learning to reach the detected CTM keypoint. In this paper,
we proposed a deep learning-based model, the hybrid neural net-
work (HNNet), to detect the CTM with a success rate of 96.6%,
yielding an error of less than 5 mm in real-world coordinates. In
addition, a separate neural network was trained to manipulate a
robotic arm for reaching a waypoint with an error of less than 5 mm.
An integrated system that combines both the perception and the con-
trol techniques was built and experimentally validated using a
human-size manikin to prove the overall concept of autonomous cri-
cothyrotomy with an RGB-D camera and a robotic manipulator
using artificial intelligence. [DOI: 10.1115/1.4056505]

1 Introduction

It is life-critical to establish a patent airway in a timely manner
when dealing with an injured with failed airways in life-
threatening situations, such as the presence of a foreign body in
the airways, angioedema, or massive facial trauma [1]. In these
can’t intubate can’t oxygenate (CICO) scenarios, cricothyrotomy

is always regarded as the last resort when orotracheal and nasotra-
cheal intubation is impossible [2]. Also, cricothyrotomy requires
less personnel and less equipment as well as introduces lesser tis-
sue dissection; in return, it reduces the overall waiting time for
surgery and results in less bleeding, making it a more efficient and
safe surgical procedure compared with other commonly used tech-
niques in emergency scenarios [3]. To correctly detect the position
of cricothyroid membrane is the first step in successfully perform-
ing cricothyrotomy: the patient lays flat on the back and the physi-
cian is asked to identify the location of the cricothyroid
membrane by locating the intersection between the traverse line
and the horizontal line [4], as shown in Fig. 1. In the last few dec-
ades, various cricothyrotomy devices have been designed for
emergency tracheal intubation with improved performance [5].
However, simulated training is required for the trainees to obtain
skills and knowledge to successfully perform the surgery under
real-world high-stress situations [6].

This work focuses on developing an integrated system to detect
the cricothyroid membrane (CTM) position of an injured person
and to control a robotic manipulator to perform the surgery using
a needle cricothyrotomy kit. The motivating application behind
this work is to deploy robots in search and rescue (SAR) opera-
tions with a focus on victim extraction and medical assistance.
Although many SAR robots have been developed in the last few
decades, most of them focused on the searching tasks, leaving the
rescue research still at its initial stage [7]. To address the chal-
lenges associated with search and rescue robots on victim extrac-
tion, such as human-robot safety concerns, communication setup,
and traversability over rough terrains, the Semi-Autonomous Vic-
tim Extraction Robot (SAVER) was proposed. Considering crico-
thyrotomy as a real-time application in search and rescue
scenarios, traditional control methods such as remote teleopera-
tion systems controlled by a companion field medic have inevita-
ble drawbacks. Remote operation poses high requirements for the
communication setup to provide a good situational awareness and
low-latency control for the remote operators [8]. Deploying a field
medic in such scenarios could pose great risks to both rescuers
and victims [9].

In order to solve the aforementioned problems, while at the
same time being inspired by recent work on Vision-Based Control
of mobile manipulators [10] and emerging technologies on
designing and manufacturing for robotic surgery applications
[11], we proposed an autonomous robotic first-aid airway manage-
ment system that can perform cricothyrotomy on the patient. Per-
ception, decision-making, and control were all embedded in the
system. With the real-time high-resolution RGB-D images fed

Fig. 1 Image of skin markings (made on a mannequin for illus-
trative purposes). Line A is the transverse marking and line B is
the longitudinal line [4].
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from the camera, the system could predict the precise location of
the incision site for cricothyrotomy. With the position information
of the CTM, the robot arm would be manipulated autonomously
to complete a series of operations with a commercial cricothyrot-
omy kit and perform the incision.

The first task is the autonomous detection of the cricothyroid
membrane position. In recent years, computer vision with artificial
intelligence (AI) technologies has achieved significant develop-
ments in a wide range of tasks such as human pose estimation,
object detection, facial recognition, etc. [12,13]. With deep learn-
ing as a powerful tool, computer vision can provide more delicate
performance compared to humans in many scenarios [12].

In our previous work [14], we proposed a hybrid neural network
(HNNet) that consists of two ensembles. The first ensemble takes
in a compressed image for region-of-interest (ROI) detection; the
original high-resolution image is then cropped and fed into
the second ensemble, alongside the feature map extracted from
the first ensemble, for precise keypoint detection. By doing so, the
network generates a prediction on an uncompressed image with-
out involving significantly large computation and satisfies the
high-efficiency and high-accuracy requirements.

In this paper, we further improved the performance of the
HNNet by introducing more advanced network structures. Also,
we manipulated the robot arm to perform a sequence of opera-
tions. Learning-based algorithms have drawn much attention in
recent years and have proven noteworthy performances on a vari-
ety of tasks [15] compared with traditional control mechanisms.
We implemented reinforcement learning to teach the robot arm
some basic actions, including reaching a specific position and
grasping objects. The detection process and robot arm manipula-
tion were incorporated into an integrated perception-control sys-
tem. In this paper, the system was built based on the assumption
that the target was immobilized before and during the whole pro-
cedure. The system was realized and tested with a Kinect V2 [16]
RGB-D camera and a MICO robot arm manipulator.

The rest of this paper is organized as follows. The proposed
methods for both keypoint detection and robot arm manipulation
are described in Sec. 2. Section 3 details the results of the pro-
posed method. Section 4 concludes the work with directions for
future research.

2 Proposed Algorithm

An autonomous robotic first-aid airway management system is
designed to perform Cricothyrotomy on a patient. The system
requires both embedded perception and control, as shown in
Fig. 2. First, the system detects the precise location of the CTM,
the incision site of Cricothyrotomy; then, the trained robot arm
manipulation learning neural network would estimate the trajec-
tory for the robot arm. Last, the robot arm is controlled by the
low-level controller, QUARC, to follow the trajectory and reach
the detected position for subsequent operations.

2.1 Hybrid Neural Network. In our previous work [14], we
proposed a HNNet that could balance both the running time and
the prediction accuracy for processing high-resolution images.
The HNNet consists of a region proposal ensemble and a keypoint
detection ensemble. The regional proposal ensemble first takes in
the compressed image and selects the ROI. A feature map is
extracted to provide spatial information. The original high-
resolution image is then cropped according to the selected ROI,
and the feature map is also cropped around the ROI with a larger
span to provide sufficient spatial information. Both the cropped
image and the cropped feature map are fed into the keypoint
detection ensemble on different stages to make the final detection.
In the previous version of the HNNet, we applied a stacked hour-
glass network as the keypoint detection model, and it was called
HNNetHG.

In this paper, the performance of HNNetHG is further improved
with the hybrid architecture remaining the same, but the keypoint
detection ensemble being changed. A multi-stage network [12],
which consists of several blocks of convolutional layers group fol-
lowed by a very deep convolutional network with 19 layers
(VGG19) [17] model, is chosen for keypoint detection. At each
stage, a heatmap is extracted for loss calculation, and it is con-
catenated with the VGG19 output as the input of the next block.
The number of stages is adjusted to 6, 4, and 3, and the correspond-
ing networks are HNNetMS6; HNNetMS4, and HNNetMS3, respec-
tively. The architecture of the improved version is presented in
Fig. 3. The tensor size is expressed in the form of height� width�
number of channels in the rest of the paper. The channel size will not

Fig. 2 Integrated CTM detection and manipulation system consisting of the location of the CTM detection,
robot arm trajectory estimation, and robot arm control
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be shown if it is equal to 1. These numbers are determined by hyper-
parameters tuning during the training process.

2.1.1 Region Proposal Ensemble. The role of the region pro-
posal ensemble is to provide the ROI and the useful spatial rela-
tionships of the image, I with a low cost. For this purpose, to feed
the compressed version, Il, of the original images with a size of
48� 72� 3 into the ensemble is sufficient. This ensemble con-
sists of a single hourglass model followed by a sequence of the
shift [18] operations performed by rolling the resulting features in
the horizontal or vertical direction, as shown in Fig. 4. It would
eventually generate a one-hot map, HROI, of which the high-bit
indicates the ROI, out of a predefined 12� 12 grid. A feature
map, F, of size 48� 72� 128 is extracted from this ensemble.

The origin image I is cropped around the ROI location. The fea-
ture map F is also cropped around it with a larger span to preserve
the necessary spatial information. The cropped image, IR, of size

256� 384, and the cropped feature map, FR, of size 32� 48�
128 are fed into the next ensemble for succeeding operations.

2.1.2 Keypoint Detection Ensemble. For the keypoint detec-
tion ensemble of HNNetMS6; HNNetMS4, and HNNetMS3, the
resulting cropped image, IR, from the region proposal ensemble is
up-sampled to the size of 512� 768� 3 while the cropped fea-
tures, FR, is up-sampled to the size of 64� 96� 128. The key-
point detection ensemble takes in both IR and FR, but at different
layers of the neural network to make the final prediction. IR is con-
catenated with FR after passing through the VGG-19 model. These
concatenated tensors then pass through a convolutional layer and
the remaining multi-stage modules to generate the heatmap, HR,
of size 64� 96. The high bit in HR represents the predicted loca-
tion of the CTM in the local coordinates. The regional heatmap is
then padded to the global coordinates and generates the global
heatmap, H, of size 256� 384.

Fig. 3 Proposed hybrid neural network (HNNet) consisting of a region proposal ensemble (left) and a key point detection
ensemble (right)

Fig. 4 Shift layer operation

Journal of Medical Devices MARCH 2023, Vol. 17 / 014502-3



For HNNetMS6; HNNetMS4, and HNNetMS3, the training proc-
esses of the region proposal ensemble and the keypoint detection
ensemble are separate. First, the region proposal ensemble is
trained. The optimized parameters of the region proposal ensem-
ble are stored. The well-trained region proposal model will be
implemented in the data generation process. The cropped image,
IR, and the cropped feature map, FR are generated as the inputs to
the keypoint detection model with the region proposal model,
which predicts the ROI and provides the feature map F. In the val-
idation process of the proposed networks, the two ensembles are
combined as an end-to-end model. The model takes in both I and
Il as inputs and generates H as the output.

2.2 Manipulator Control. After the position of the CTM is
detected, a robotic manipulator controller needs to plan global tra-
jectories for the end-effector of the robotic manipulator to reach
the CTM area and perform the Cricothyrotomy. As an initial step
toward this goal, the manipulator control part of this paper focuses
on guiding a robotic manipulator to the CTM. The neural
network-based controller is trained in simulated environments
powered by MuJoCo physics engine [19] using Reinforcement
Learning. Binary sparse reward [20], instead of complex shaping
reward, is used in the simulated environments to reduce the
reward function design burden [21]. In this section, the detailed
design of the neural network and simulated environment are
presented.

2.2.1 Control Agent Neural Network. To control the robotic
manipulator to perform the reaching task, an Actor-Critic method,
deep deterministic policy gradient (DDPG) [22], was used in the
training process to obtain the desired control policy. In this sparse
reward environment, this offline approach was further improved
using a policy learning method, hindsight experience replay
(HER) [21]. To obtain a good generalization over the entire work-
space of the robot, hyperparameter tuning is performed to obtain a
dedicated parameter set for the neural network of both the actor
and the critic. Table 1 presents the hyperparameters used for the
tuning process. In this work, both the deterministic policy and
value function are represented as two hidden-layer multilayer per-
ceptrons (MLPs) with rectified linear unit (ReLU) activation func-
tions. The output of the deterministic policy was further bounded
in consideration of the actuator limits of the robotic manipulator.

2.2.2 Simulated Environments. To train the control agent, a
6-DOF Kinova JACO arm with a three-finger gripper as the end-
effector is used in the simulation environments. The workspace of
the simulated environment was set to fit the MICO arm, the actual
robot arm that was used for the experiments. In this reaching task,
the finger actuators of the gripper are fixed without control inputs,
and the gripper orientation is fixed toward the floor at all times. In
the reaching task, the arm needs to reach a randomly generated
desired location above the floor, starting from a random gesture.
The time-step of the simulation was set to 0.002 s to perform a
fast and accurate simulation of the dynamic model.

Observations: To provide a more generalizable method that can
be applied to different types of robotic manipulators, the states of
the system described in the MuJoCo engine consist of the robotic
gripper position and velocity in the workspace (the robotic manip-
ulator world coordinates).

Actions: Instead of controlling the joint angles of the robot
directly, the relative movement of the robotic gripper in the work-
space was used as the control input for the robotic manipulator.

This allows for transferability among different robotic manipula-
tors. The action output from the deterministic policy can be
expressed as A ¼ fai : ai 2 R3g.

Goals: The goals are defined as the target positions in the work-
space that the gripper of the robotic manipulator is supposed to
reach within a fixed period, G ¼ fgi : gi 2 R3g. In each training
episode, both the goal and the initial position of the robotic grip-
per are randomly generated within a feasible workspace.

Rewards: In both teacher and student training environments,
sparse rewards are used as, rtðstþ1; gÞ ¼ �ðjjfgðstþ1Þ � gjj > eÞ,
where fg maps the state, s, to an achieved goal, g, and e determines
the control precision in the task.

3 Training and Experiment

3.1 Cricothyroid Membrane Detection

3.1.1 Cricothyroid Membrane Dataset. A dataset containing
16,415 images was created with the visibility and pixel location
(if visible) of the cricothyroid membrane on each image to train
and test the proposed cricothyroid membrane keypoint detection
neural network. The dataset contains images from 13 subjects
with different genders, races, ages, and body shapes. The statistics
of the subjects are provided in Table 2.

RGB image data was collected with A Kinect V2 RGB-D cam-
era [16] from the subjects, as shown in Fig. 5(a). During the data
collection process, each subject was asked to move his/her neck in
three ways: (1) rotate the neck from side to side, (2) extend the
neck to lift the chin upward, (3) bend the neck laterally to bring
the ear to the shoulder, as shown in Figs. 5(b)–5(g).

For each of the movements mentioned above, images were cap-
tured from different points of view. The points of view were deter-
mined by the combinations of the different relative heights of the
camera to the subject, h, the relative horizontal distance, w, and
the angle between the neutral axis of the camera and the one of
the subject, w, as shown in Fig. 5.

In the process of image collection, the camera captured 50
images for each combination. In total, 58,500 images were cap-
tured. 16,415 images that provide unobstructed views of the
human face and neck area were chosen to build the dataset.

To make the annotation process of the dataset efficient and
accurate, we built a MATLAB-based Graphical user interface (GUI)
labeling program, as shown in Figs. 6(a)–6(c). In this program,
the visibility of the keypoint is selected from three different lev-
els: ’0’ (invisible in the image), ’1’ (visible, with no distinct fea-
ture), and ’2’ (visible, with distinct features). The location of the
keypoint (on the pixel) is labeled if it is visible. The labeling pro-
cess can be done with a few mouse-and-keyboard operations,
which are explained in Fig. 6(d). The labeling is done by a medi-
cal provider in Respiratory Department.

3.1.2 Training Process and Results. Among the 16,415
images in the dataset, 80% (13132 images) were randomly
selected as the training set and the other 20% (3283 images) were
selected as the test set, such that the model is trained with suffi-
cient number of samples to learn the patterns and perform well
during the test phase, and also has sufficient test samples to be
fairly evaluated. The original RGB images collected from the Kin-
ect V2 camera had a resolution of 1080� 1920. To accommodate
the size of the neural networks, they were cropped around the

Table 1 Hyperparameter tuning for critic and actor

Parameters Critic Actor

Hidden layers # [2, 3, 4] [2, 3, 4]
Neurons # [128, 256, 512] [128, 256, 512]

Table 2 Summary of the dataset collection process

Diversity statistics of the subjects

Race Age Gender Weight

Mongoloid 6 18–21 2 Male 10 100 lb–130 lb 3
Caucasian 2 22–25 7 130 lb–160 lb 5
Black 5 26–29 4 Female 3 160 lb–200 lb 5
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center to the size of 1024� 1536. The augmentation process of
the dataset consisted of rotation (�30 deg � 30 deg), scaling
(0:8 � 1:2), and transportation (0 � 1=2 of the distance from the
keypoint location to each edge). The images were also normalized
to 0 � 1:0 on all RGB channels.

In the paper, the proposed region proposal model from our pre-
vious work [14] was inherited. PPD¼0 and PPD¼1 of the region pro-
posal network model are 73.1% and 99.7%, respectively, where
PPD¼n stands for the percentage of predictions with an error of
less than n pixels in Euclidean distance. The average time taken
for a single prediction on one image is 23.8 ms. The input and out-
put sizes for this model are 48� 72 and 12� 12, respectively. The
summary of the proposed region proposal model in comparison
with other baseline models is provided in Table 3.

For the keypoint detection models, the groudtruth are heatmaps
with 2-D Gaussian distribution centered on the keypoint location.
Let xj 2 R2 be the keypoint location. The value, Sj, of each pixel,
x 2 R2, of the of heatmap is expressed as follows:

Sj ¼ exp � jjx� xjjj22
r2

� �
(1)

where r is a constant that controls the spread of the high bits. The
neural networks were trained using Keras with Tensorflow as the
backend on an NVIDIA Xp GPU. All models were trained for 20
epochs.

The keypoint detection models of HNNetMS6; HNNetMS4, and
HNNetMS3, with the number of convolutional-layers stages of 6, 4,
and 3, were trained. A bare VGG19 multi-stage Network model
was also trained for comparison. All the models were trained on
the same dataset with the input size of 512� 736� 3, and output
size of 64� 96. To accommodate the GPU memory and optimize
the training process performance, the batch size was set to 8 for
the keypoint detection models. A Euclidean loss was chosen as
the loss function

Eucl� loss ¼ 1

2

� �Xn

i¼1

ytrue � ypredictð Þ2 (2)

Multi-SGD with the learning rate of 2� 10�5 was chose as the
optimizer to converge the models. The number of the trainable
parameters of HNNetMS6; HNNetMS4, and HNNetMS3 are

Fig. 5 (a) Image collection process, (b)–(g) demos of neck movements, (b) and (c) rotate the neck from
side to side, (d) and (e) extend the neck to lift the chin upward, and (f) and (g) bend the neck laterally to
bring the ear to the shoulder

Fig. 6 (a)–(c) Screenshots of MATLAB GUI for the labeling pro-
cess for cases when the visibility level of the keypoint is labl-
eled as (a) ’2’, (b) ’1’, (c) ’0’, and (d) the instructions to label the
image with the GUI

Table 3 Summaries of training processes and testing result of
region proposal model

Models PRPa Single hourglass Stacked hourglass

Training process
Batch size 32 32 24
Training parameter 3,505,827 3,426,163 6,562,470
Prediction accuracy (%)b

PPD¼0c 73.1 69.5 70.0
PPD¼1 99.7 99.4 99.6
Running time (ms)d 23.4 12.9 21.0

aPRP stands for proposed region proposal model
bBased on results of prediction of 1946 images from testing dataset with
CTM labeled as visible.
cPPD¼n stands for the percentage of the images that the Euclidean distance
between the predicted position of CTM and the ground truth is less than n
pixels.
dThe average time taken for a single prediction on one image (The models
run on 1000 images in total).

Journal of Medical Devices MARCH 2023, Vol. 17 / 014502-5



28,103,750, 20,028,484, and 15,990,851, respectively. The train-
ing details of the models are presented in Table 4.

During the test stage, the Euclidean distance between the pre-
dicted position of the cricothyroid membrane and the labeled posi-
tion was used to calculate the pixel deviation (PD)

PD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� k � xp �

1

2

� �� �2

þ y� k � yp �
1

2

� �� �2
s

(3)

where x, y is the labeled location of the keypoint on the original
high-resolution image, and xp, yp is the predicted location scaled
back to the original high-resolution image. k is the scale factor
from the heatmap, H, to the original image, I. The evaluation
results are shown in Table 4 and Fig. 7. PPD¼n stand for the per-
centage of test samples with a prediction error of less than n pixels
in Euclidean distance. PPD¼5 to PPD¼30 provide measures of preci-
sion among different thresholds.

The maximum threshold of the Euclidean distance was set to be
30 pixels as it approximately corresponds to 5 mm in real-world
coordinates, and in the actual cricothyroid membrane position
estimation process, it is considered as a correct estimation if the
detected position is within 5 mm of the midline between the lower
bound and the upper bound of the membrane [4].

The average running time of HNNetMS4 is 97.8 ms. It consists
of two portions: 23.8 ms for the proposed region proposal ensem-
ble, and 74.0 ms for the proposed keypoint prediction. Among all
models, HNNetMS4 met the real-time requirement that the predic-
tion time per frame should be less than 100 ms and achieved an
optimized performance at the same time.

3.2 Manipulator Control. The control agent neural network
introduced in Sec. 2.2.1 was trained to control the JACO arm for
the reaching task in the simulated environment. The agent was
trained for 120 epochs from scratch and eventually reached a suc-
cess rate of 100%.

Table 4 Summary of training processes and testing results of keypoint detection models

Models HNNetMS3 HNNetMS4 HNNetMS6 Multi-stage net HNNetHG

Training process
Training parameter 20,028,484 28,103750 28,037,953 1,453,376
Prediction accuracy (%)a

PPD¼5b 48.7 47.1 51.0 8.0 29.1
PPD¼10 85.0 86.5 87.2 32.5 61.7
PPD¼20 93.8 94.7 95.1 86.1 78.3
PPD¼30 95.8 96.6 96.7 96.8 84.3
Running time (ms)c 23.4þ 62.2 23.4þ 74.0 23.4þ 98.5 92.8 23.4þ 28.8

aBased on results of prediction of 1946 images from testing dataset with CTM labeled as visible.
bPD (pixel deviation) stands for Euclidean distances in pixels, and PPD¼n stands for the percentage of predictions with an error of less than n pixels in
Euclidean distance.
cThe average time taken for a single prediction on one image (with 1000 prediction ran in total).

Fig. 7 Testing precision of keypoint detection models
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Table 5 Coordinates of the devices on the test bench

Device i Positiona (m) Orientationb

Robotic manipulator ð0; 0:36; 0Þ I3

Kinect v2 ð0:06; 0:03; 0:75Þ 0 �1 0

�1 0 0

0 0 �1

2
4

3
5

a(x, y, z) in meter.
bWith 1 as in same direction and �1 in opposite direction of (x, y, z).

Table 6 Computing hardware details of the integrated control
system

Controller Device Function

High-level AMD 1950X
Nvidia 2080Ti

1. CTM detection
2. Manipulation planning in

work space
3. Mapping planning to joint space

Low-level Intel i7 6700 Manipulator joint position control

Fig. 8 Test bench setup (a) front view and (b) top view

Fig. 9 The experiment result with the MICO robot arm manipulator (a) joint positions, (b) joint torques, (c) planned and
actual end-effector positions, and (d) planned and actual trajectories

Journal of Medical Devices MARCH 2023, Vol. 17 / 014502-7



3.3 Experimental Validation

3.3.1 Experimental Setup. To experimentally validate the per-
formance of the integrated CTM detection and manipulation sys-
tem, a testbench was designed and setup to simulate the real-life
situation inside the Robotics and Mechatronics Laboratory, as
shown in Fig. 8. A Simple Simon manikin from Gaimard - a high-
fidelity full-size manikin designed for medical training purposes -
was used to simulate the patient. The manikin has sufficient
details in its head-and-neck for our experiment. A Kinect V2
RGB-D camera was mounted on top of the manikin at the height
of 0.75 m, and a MICO robot arm (with a control resolution of
5 mm) was placed on the right side of the manikin. The coordi-
nates of the Kinect camera and the robot arm are calibrated with
the hand-eye calibration [23] method. The summary of the coordi-
nates of the devices is provided in Table 5. In this paper, the sys-
tem was built based on the assumption that the victim was
immobilized before and during the whole procedure.

The Kinect V2 was connected to the high-level controller with
the CPU and the GPU in charge of the perception, decision-
making, and control process. The RGB image of the upper body
area of the manikin with size 424� 512 captured from the Kinect
V2 was sent to the computer, processed to the size of
1024� 1536, normalized, and fed into the HNNet running on the
GPU as input to generate the predicted CTM location in the x-y
plane. The location of the point in the z-axis is then obtained from
the depth image captured at the same time and the RGB/Depth-
image mapping function provided by Kinect V2. The three-dimen-
sional (3D) position is transferred to the robot arm coordinates. With
the 3D position transferred to the robot arm coordinates as the
desired position, the decision-making system with a well-trained
neural network would generate the planned trajectory for the robot
arm manipulator in the testbench coordinates. With the trajectory in
the workspace, the inverse model controller generates the trajectory
in the joint space, which is sent to the low-level controller to operate
the robot arm manipulator. The details of the computing hardware
are shown in Table 6.

3.4 Experimental Results. The planned trajectory of the
MICO robot arm manipulator in the task space decided by the
well-trained neural network and its actual trajectory are presented
in Figs. 9(c) and 9(d), and the joint position and torque of the
robot arm manipulator during the reaching process are presented
in Figs. 9(a) and 9(b).

4 Conclusion

The paper focused on applying deep learning and reinforcement
learning techniques to the tasks of CTM detection and robot arm
manipulation. In this paper: (1) The HNNet model was proposed
for precise real-time CTM detection; the model was trained and
validated with the CTM dataset; (2) The robot arm was manipu-
lated to reach the detected point using reinforcement learning; (3)
The proposed techniques were combined into a single system, and
the system was validated in real-life experiments on a human-
sized medical manikin using a Kinect V2 camera and a MICO
robot arm manipulator. Also, with the corresponding dataset pro-
vided, the HNNet can be applied to other human keypoint detec-
tion tasks with high-precision and real-time requirements.
Ensemble-based architecture can also serve as a method to
enhance the performance of the existing neural networks for vari-
ous computer vision tasks.

The methods and results described in this paper serve as initial
steps for the first-aid airway management robotic system to per-
form cricothyrotomy on a patient. Future work would be focused
on the manipulation of the robot arm for operations in the next
steps and improvement of the perception system. The first-aid air-
way management robotic system is designed to perform cricothyr-
otomy on the patient with a commercial cricothyrotomy kit. In
this system, with the detected position of the CTM, the robot arm

manipulator would pick up the cricothyrotomy needle and per-
form the incision. The CTM detection neural network will only
provide the initial judgment of the location of the incision. How-
ever, it would require the topography of the surrounding region to
be measured by precise instruments such as a force-sensitive resis-
tor. With the 3D information, a more dependable estimation of the
incision point can be achieved. The correct angle of the incision
can also be determined from the information. Instead of using the
analytical method, a neural network approach could be applied to
solve the inverse kinematics of the robot arm to achieve a more
robust performance when the task becomes increasingly complex.
Moreover, the proposed architecture and methodologies described
in this paper are not restricted to the application of airway man-
agement. A wide range of first-aid operations that requires high-
precision human keypoint detection and robot arm manipulation,
such as bleeding control, CPR, etc., could be developed by apply-
ing the framework of the proposed integrated system. The ideol-
ogy of autonomous first-aid robotic systems with Artificial
Intelligence could be more complete with gradual development
and improvement in the future.

Furthermore, the system was built based on the assumption that
the target was immobilized before and during the whole proce-
dure. However, in real-life scenarios, the patient may experience
movement in the head and neck caused by unstable support. The
head support system of the SAVER will be implemented to stabi-
lize the head and neck of the patient after an estimation of the
CTM position is made with HNNet. Therefore, the robot arm
manipulator will be able to operate on an immobilized target.

The comprehensiveness of the dataset can also be further
enhanced by adding the elderly and people suffering from obesity
to the pool of subjects, collecting the images from a varied range
of backgrounds, and adding the simulated traumas to the collected
images. With complicated factors such as wrinkles, fat, traumas,
obstructive clothing, noisy backgrounds, etc., presented in the
dataset, the detection neural network will be able to extract the
features more accurately and achieve improved performance in
the CTM detection under different unknown situations.
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