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Abstract— This paper introduces a voice-controlled Human
Machine Interface (HMI) tailored for an assistive robotic
exoskeleton glove, aimed at assisting patients coping with
Brachial Plexus Injuries (BPI) in regaining their lost grasping
functionality. The development of this HMI draws upon clinical
experimentation results, forming a foundation for its design.
The paper delves into the challenges encountered while em-
ploying a prior voice-based HMI, which necessitated an internet
connection for complex computations and exhibited limitations
in effectively processing concise commands. To address these
issues, an innovative voice-controlled HMI system is proposed,
featuring fixed-word detection to replace the speech-to-text
(STT) converter and the Neutral Language Processor (NLP)
to reduce computational overhead. Furthermore, the new HMI
replaces the previous text-independent speaker verification with
a text-dependent, one-shot learning approach. This enhance-
ment streamlines custom retraining, significantly improving
speaker verification accuracy for concise commands. Experi-
mental results substantiate the applicability of the proposed
voice-controlled HMI for assisting individuals with BPI through
specialized exoskeleton gloves.

Index Terms— Assistive Robotics, Exoskeleton Glove, Voice-
controlled HMI, Wearable Robotics, One-shot Learning

I. INTRODUCTION

A. Assistive Robotic Exoskeleton Gloves

Assistive robotic exoskeleton gloves have gained
widespread use in postsurgical physical therapy for Brachial
Plexus Injuries (BPI) [1]–[5]. BPI, which is typically the
result of motorcycle or snowmobile accidents, inflicts
damage to the neural system of the hand, arm, and shoulder,
leading to compromised mobility and sensation. Although
surgical interventions can partially restore arm and shoulder
function, they often do not address hand-related problems,
making exoskeleton gloves a promising method to prevent
hand muscle atrophy during therapy [6].
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Beyond physical therapy, wearable robotic exoskeleton
gloves extend their utility to assist patients with BPI in
everyday activities [7], [8].

B. Exoskeleton Glove Human Machine Interface for Patients
with BPI

The Human-Machine Interface (HMI) plays a pivotal role
in enabling users to control exoskeleton gloves with minimal
effort. Unlike patients recovering from post-stroke symp-
toms, those with BPI often lack control over their muscles
on the paralyzed hand and arm. During physical therapy
of the hand muscle, patients use the healthy arm to assist
the paralyzed hand and arm. The physical therapy procedure
makes it difficult to find a location to place electromyography
(EMG) sensors, making EMG-based HMIs unsuitable for
their needs [9]–[12].

Although noninvasive electroencephalogram (EEG)-based
HMIs have been explored, they require the use of EEG
probes or headsets, which are less cost-effective and portable
compared to voice-based alternatives [13]–[15].

In contrast, voice-controlled HMIs offer exceptional wear-
ability and robust intention detection, making them a pre-
ferred choice for assistive exoskeleton gloves [16]–[18].
Furthermore, voice-based HMIs equipped with speaker ver-
ification ensure operational safety for assistive exoskeletons,
making them the focus of this research.

This paper introduces a voice-based HMI design for
an assistive robotic exoskeleton glove, addressing speaker
verification challenges. This work is part of a broader
effort to develop a state-of-the-art exoskeleton glove sys-
tem. Initially, we designed an assistive exoskeleton glove
paired with a voice-controlled HMI and conducted clinical
experiments. Section II-A describes the exoskeleton glove
used in these experiments. Section II-B discusses the initial
voice-controlled HMI, while Section III presents the clinical
results. Based on these results, the exoskeleton glove and
HMI were modified and improved [19]. Sections IV and V
detail the revised HMI, and Section VI covers the updated
system and experiments.

II. RELATED WORK

A. Assistive Exoskeleton Glove

This study used a linkage-driven exoskeleton glove with
7 degrees of freedom (DOF) in the clinical experiment [2].
Its design incorporates Series Elastic Actuators (SEAs) to
empower the movement of each finger, wrist, and thumb
thenar, while simultaneously offering force sensing capabili-
ties at each linkage endpoint. This exoskeleton facilitates five
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Fig. 1. The assistive exoskeleton glove used in the clinical experiment. (A)
An integrated prototype of the glove. (B) Examples of grasping experiments
with the glove.

fundamental grasping types, including cylinder grasp, sphere
grasp, tripod grasp, tip grasp, and lateral grasp.

The exoskeleton glove contains an on-board microcon-
troller, batteries, and Bluetooth connectivity, enabling wire-
less operation for approximately 2.5 hours. The entire glove
weighs 759 grams, including batteries and control units.
A visual representation of the integrated exoskeleton glove
prototype is shown in Fig. 1.

B. Voice-controlled HMI with Text-independent Speaker Ver-
ification

The exoskeleton glove is equipped with a voice-controlled
Human-Machine Interface (HMI) featuring an embedded
text-independent speaker verification component [18], [20].
Leveraging a Bluetooth Earpod as the voice input device, this
HMI responds to personalized voice commands, rendering
interaction effortless.

Upon activation, users communicate with the HMI via
voice, which is subsequently transformed into text through
Google’s online speech-to-text (STT) API. Keyword analysis
is performed to discern the intended grasp type. If the
voice command proves to be valid, we employ a text-
independent deep learning-based speaker verification pro-
cess. This technique used the VoxCeleb dataset for training
a speaker’s utterance extractor, gauging the cosine distance
between the incoming speaker’s utterance and the enrolled
user. Any similarity score that falls below the predefined
threshold results in rejection, ensuring exclusive control of
the exoskeleton glove by the enrolled user. The architectural
layout of this voice-based HMI is outlined in Fig. 2.

This method has achieved an Equal Error Rate (EER) of
only 12.4% in the VoxCeleb1 validation dataset. The HMI
system operates with minimal latency, executing efficiently

Fig. 2. The structure of voice-based HMI used in clinical experiments

on a single-thread Intel i7-8750H processor with 2GB of
RAM. Its performance is underlined by an average accuracy
rate of 91.4% in correctly classifying and verifying voice
commands [18], [20].

III. CLINICAL EXPERIMENT CHALLENGES

In close collaboration with the Carilion Clinic, a series
of clinical experiments were carried out under the IRB-
19-330 protocol, involving patients affected by Brachial
Plexus Injuries (BPI). In four clinical trials involving three
participants, considerable success was achieved in restoring
grasping ability in three of the trials.

Fig. 3(A) portrays a BPI-afflicted subject with muscle
atrophy in her right hand, despite undergoing surgery for
nerve system reconstruction in her shoulder and forearm.
Notably, her shoulder and forearm muscles remained weak.
As evidenced in Fig. 3(B)-(E), she had to rely on her
unaffected hand to support her paralyzed arm and hand when
attempting to grasp objects. The application of the voice-
controlled assistive exoskeleton glove, featuring automatic
force planning, proved instrumental in partially reinstating
her hand’s grasping capabilities, as demonstrated in Fig. 3(C)
and (E).

All subjects effectively operated the voice-controlled HMI
during clinical experiments. However, this HMI revealed two
practical challenges. First, it relied on an internet connection
for speech-to-text (STT) conversion and Natural Language
Processing (NLP) for voice command recognition. Conse-
quently, when operating in areas with limited Internet access,
the HMI experienced significant latency, reaching up to
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Fig. 3. Clinical experiment performed using the assistive exoskeleton glove.
(A) Patient with BPI on her right hand. (B) The patient failed to grasp a
duct tape. (C) The patient successfully grasped the duct tape with the help
of the exoskeleton glove. (D) The patient failed to grasp a marker.(E) The
patient successfully grasped the marker with the help of the exoskeleton
glove.

700ms. In particular, two out of three subjects deemed this
latency higher than desirable, suggesting that the processing
time should be reduced by half.

Second, the voice commands typically used were con-
cise, leading to suboptimal performance in text-independent
speaker verification, yielding a 22% Equal Error Rate (EER)
compared to the more favorable 12.4% EER achieved in the
VoxCeleb1 validation dataset. The core algorithm, reliant on
deep learning for generalized feature extraction, presented
challenges when dealing with edge cases. For instance, one
subject’s mother could effortlessly activate the exoskeleton
glove, which was initially enrolled using the subject’s voice.
Retraining the model for each subject using the VoxCeleb1
data set, which required more than 30 hours with a GTX
Titan XP GPU, proved impractical.

In response to these challenges, vital modifications were
made to the previous voice-controlled HMI. First, STT
and NLP were replaced with a fixed command keyword
detector, eliminating the need for an Internet connection.
Second, the transition to using fixed commands to operate the
exoskeleton glove enabled the implementation of a one-shot
learning-based text-dependent speaker verification method.
Subsequent sections offer detailed technical insights into
these enhancements.

IV. COMMAND DETECTION

In the previous voice HMI, STT and NLP methods were
used to extract voice commands due to their robustness. For
instance, phrases like “grasp a cup” or “grasp a water bottle”

effectively triggered a cylinder grasp by the exoskeleton
glove. However, based on valuable patient feedback, a more
user-friendly approach was favored, allowing patients to
directly choose the grasp type, typically involving shorter
commands. Given that the exoskeleton used in this research
accommodates five fundamental grasp types, users found
it convenient to memorize these commands. To enhance
the accuracy of fixed command detection, fixed commands
were incorporated into the grammar of the STT and NLP
models, effectively reducing the Word-Error-Rate (WER).
This new approach was introduced midway through the
clinical experiments and garnered positive feedback from
patients.

Following the conclusion of the experiments, the need
for employing the STT and NLP methods as a command
detector became redundant due to the use of fixed commands.
Researchers have explored various efficient approaches for
fixed command detection, with two common methodologies
prevailing. Some have advocated for a one-shot learning
method, comparing the input voice command with enrolled
commands [21]. Conversely, others have employed neural
network methods as feature extractors, coupled with the
Hidden Markov Model (HMM) approach to decipher the
letter sequence of the input command [22], [23]. The field
has witnessed extensive research efforts, resulting in the
availability of multiple APIs. Notably, the Picovoice Porcu-
pine wake word detection API has been favored over other
commonly used APIs such as Pocketsphinx [24] or Snowboy
[21], primarily due to its superior performance. This selection
aligns with the API’s minimal computational demands and
its capacity to function without Internet connectivity.

V. SPEAKER VERIFICATION

Two prevalent text-dependent speaker verification ap-
proaches have been widely explored. The first approach em-
braces a one-shot learning methodology for text-dependent
speaker verification [25], [26]. This approach offers the
advantage of requiring significantly less data and training
time, focusing solely on the development of a comparison
network [27]. Nevertheless, it necessitates specific training
data aligned with the verification command, which can be
labor intensive to collect for each unique command.

In the second approach, some researchers have opted to
split the text-dependent speaker verification task into two
distinct tasks: Speech-to-Text (STT) and text-independent
speaker verification. The text-independent speaker verifi-
cation method leverages a Convolution Neural Network
(CNN) feature extractor and a cosine distance comparator
to differentiate between different speakers [28], [29]. This
approach avoids the data availability issue by drawing from
a text-independent speaker verification dataset like VoxCeleb.
While theoretically more robust, practical performance is
influenced by factors such as the length and type of voice
commands, as well as the speaker’s characteristics. This
CNN-cosine comparator method was employed in the previ-
ous HMI.
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To select the most suitable solution for this application,
both methods are implemented and compared.

A. The Collected Speaker Verification Dataset

To evaluate the performance of both speaker verifica-
tion methods, a dataset encompassing approximately 2000
voice commands from seven distinct subjects (referred to as
Speaker A to G) was meticulously curated. It is noteworthy
that all seven subjects share several common attributes: they
are all males aged between 24 to 30, and they possess a
Mandarin language background. Within this dataset, each
subject contributed a set of five standardized commands,
which include: “hey glove,” “cylinder grasp,” “tripod grasp,”
“lateral grasp,” and “release object.”

In the case of the one-shot learning method, the one-shot
comparison network was trained using data from five specific
speakers (Speakers A to E), while the remaining two speakers
(F and G) were designated for validation purposes. The
validation process involved executing speaker verification for
each command uttered by Speakers F and G against the
corresponding command articulated by Speakers A to E.

B. One-shot Learning Based Text-Dependent Speaker Veri-
fication

The essence of one-shot learning lies in the creation of
a comparison neural network responsible for binary clas-
sification based on the similarity between two inputs. The
structural components of the one-shot learning method are
illustrated in Fig. 4. At runtime, the first spectrogram repre-
sents the user input. The second spectrogram is chosen from
a dictionary of spectrograms corresponding to each command
and each user. The algorithm can be dissected into two
fundamental segments: preprocessing and the comparison
neural network. Below, a closer examination is conducted to
elucidate the design choices underpinning this framework.

First, voice commands are recorded using a single channel
microphone at a sampling frequency of 16,000 Hz. To
standardize input data, a fixed length L is established for
each valid voice command, depending on the length of the
command itself. If the input voice command exceeds this
predetermined length, it is trimmed at both ends. Conversely,
if the input voice command falls short of L, zero-padding
is employed to fill the void. To enable input compatibility
with convolutional neural networks, the data undergoes a
conversion process into a spectrum. Two widely adopted
audio preprocessing conversion methods were evaluated: Mel
Frequency Cepstral Coefficients (MFCC) and Mel-spectrum
(Mel). Both methods were rigorously assessed on speaker
verification validation tasks, with performance gauged using
the Equal Error Rate (EER). After meticulous tuning of the
number of coefficients and Mel bands, the optimal results are
presented in Tab. I. It was discerned that the Mel-spectrum
method outperformed the MFCC method.

Second, the performance of several commonly used com-
parator networks was analyzed, including VGG-16, Mo-
bileNet V2 (MBN V2), and Resnet-50 (Res-50). The results
are summarized in Tab. I. It was evident that the VGG-16

Fig. 4. The structure of the one-shot learning based text-dependent speaker
verification method. Spectrum A: the spectrum of the user’s input during
runtime for the voice command ”release object.” Spectrum B: the stored
spectrum of the same user’s ”release object” voice command.

network achieved the lowest EER, establishing its superiority
in this context.

TABLE I
COMPARISON OF DIFFERENT ONE-SHOT LEARNING SPEAKER

VERIFICATION DESIGN CHOICES

Preprocess Comparator Networks EER
MFCC VGG-16 34%

Mel VGG-16 23%
Mel MBN V2 28%
Mel Res-50 23%

C. Speaker Verification Comparison

This subsection evaluated the effectiveness of text-
dependent and text-independent speaker verification by mea-
suring their performance using the Equal Error Rate (EER).
A lower EER indicates a more accurate speaker verification.
Fig. 5 offers a comprehensive view of the speaker verification
EER for speaker F and G across two distinct commands.
These specific commands have been chosen as illustrative
examples to underscore the impact of command type and
speaker variability on EER. Notably, when evaluating all
commands for speaker F and G against speaker A to E, both
CNN-Cosine and One-shot methods exhibit a similar average
EER, as indicated in Tab. II. It is difficult to come to a
definite conclusion regarding which method is more effective
due to the restricted amount of data available.

However, it is worth highlighting that the one-shot method
emerges as the more suitable choice for this application be-
cause of the following three reasons. First, it achieved com-
parable performance to the CNN-cosine comparator method,
while demanding significantly fewer data and shorter training
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Fig. 5. Comprehensive view of the speaker verification Equal Error Rate
for speaker F and G across two distinct commands. F-”hey glove”: Speaker
verification was conducted on the ”hey glove” command uttered by speaker
F compared to the same command spoken by the remaining speakers.

TABLE II
PERFORMANCE COMPARISON BETWEEN CNN-COSINE AND ONE-SHOT

SPEAKER VERIFICATION METHODS

Method Command Task: speaker x vs. x EER
CNN-Cosine All F, G vs. A-E 22%

One-shot All F, G vs. A-E 23%
One-shot retrain All F, G vs. A-E 16%

times, as evidenced in Tab. III. Additionally, inference times
were measured by running both methods on an Intel E5-1260
CPU, while training times were determined by executing
both methods on an NVIDIA GTX Titan XP GPU. Further-
more, exploiting the rapid retraining capability of the one-
shot method, which allows the inclusion of one of the held-
out speakers for testing against other speakers, can enhance
speaker verification EER on the collected dataset. As shown
in Tab. II, this enhancement leads to an improvement from
23% to 16% in the EER.

TABLE III
SPEAKER VERIFICATION COMPARISON

Method CNN-Cosine One-shot
Inference Speed ∼94ms ∼190ms
Training Time 30+hr ∼20min

Training Data Size 300,000+ utterances ∼2000 utterances

VI. IMPROVED HUMAN MACHINE INTERFACE

This section discusses the structure of the improved HMI.
The voice-controlled HMI was modified based on the previ-
ously mentioned discoveries. The design of the new voice
HMI is shown in Fig. 6. It functions by capturing input
from the microphone, recognizing the command through
the Picovoice Porcupine wake-word API, and subsequently
transmitting the recognized command to a one-shot learning
speaker verification model.

A comparison of the processing speed between the pre-
vious and new HMIs is detailed in Tab. IV. The inference
time was evaluated by executing both methods on an Intel
E5-1260 CPU. It is noteworthy that the one-shot method was

Fig. 6. The structure of proposed voice-controlled HMI using the one-shot
learning method.

marginally slower by approximately 100 ms compared to the
previous method, given the assumption of an ideal Internet
connection. This discrepancy can be attributed to the fact
that all computations were executed locally.

TABLE IV
TIME COST COMPARISON TO PROCESS ONE COMMAND

Google API+CNN-Cosine Porcupine + One-shot
CR 58+ ms ∼110ms
SV ∼94ms ∼190ms

Total 152+ms ∼300ms

CR: Command Recognition; SV: Speaker Verification

In addition, an experimental assessment was conducted on
the complete HMI system, involving 200 voice commands
sourced from two human subjects. This data set encompassed
five types of command, each type comprising 20 trials per
subject. Approximately 50% of the data was allocated to
retraining the model. The resulting performance was tested
against the previous HMI and other state-of-the-art HMIs,
as illustrated in Tab. V. The proposed HMI was tested
with 200 voice commands at a binary output threshold
of 0.5. It achieved a classification accuracy of 98% and
a verification true acceptance rate of 96.5%. The overall
verification success rate was 94.5%.

VII. CONCLUSION

This paper proposed a voice-controlled human-machine
interface (HMI) with speaker verification, specifically de-
signed to assist patients with Brachial Plexus Injuries. The
proposed HMI used a one-shot learning method to perform
text-dependent speaker verification without the need for
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TABLE V
COMPARISON BETWEEN THE PROPOSED HMI SYSTEM AND OTHER

STATE-OF-THE-ART VOICE HMI SYSTEMS

Author Method Acc* SV
Proposed Porcupine + one-shot 94.5% Yes

Yunfei, et al. [18] (old HMI) GoogleAPI+CNN 91.4% Yes
He, et al. [30] GoogleAPI 92% No

El-emary, et al. [31] GMM <85% No
Gomez, et al. [32] MG GMM+SM 88% No
Gomez, et al. [32] HMM 100% No

Megalingam, et al. [33] PocketSphinx:HMM 90% No
Pleva, et al. [34] Julius: HMM 91% No
Guo, et al. [35] LD3320 speech chip 94% No

SV: speaker verification
Acc*: for HMIs without speaker verification, Acc is the command
classification accuracy. For this paper, Acc stands for successful rate,
which is the command classification accuracy times the verification true
acceptance rate.
GMM: Gaussian Mixture Model
MG GMM+SM: Mouth gesture based detection using GMM and state
machine
HMM: Hidden Markov Model

an Internet connection. Compared to the previous voice-
controlled HMI, this has also drastically reduced training
time and requires significantly less data during training.

The proposed Human-Machine Interface (HMI) achieved a
23% Equal Error Rate (EER) on speaker verification, which
is similar to the performance of the prior HMI that employed
a CNN-cosine comparator technique. In particular, the one-
shot learning approach can be readily applied in real-world
scenarios to retrain the neural network with user-specific
voice commands. This technique yielded an reduction in EER
from 23% to 16%, surpassing the CNN-cosine method by
6%.

In contrast to other state-of-the-art voice HMIs, the pro-
posed interface has a 94.5% success rate in recognizing and
verifying input commands. The HMI’s response time delay
on an E5-1260 CPU, approximately 300ms, was deemed
acceptable by human subjects.

The comparative results underscore the advantages of the
proposed method over other state-of-the-art voice HMIs, par-
ticularly in applications that require customized and concise
commands. It is worth noting that this paper introduces
preliminary findings on a voice control method utilizing
one-shot learning. Further validation of its performance
will require a larger training and validation dataset in the
future. Furthermore, conducting more clinical experiments to
gather user feedback will be essential for a comprehensive
evaluation.
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