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ABSTRACT 
For utilizing robotic tail to stabilize and maneuver a 

quadruped, it is important to understand the mechanism of how 
the tail motion influences the quadruped motion which requires 
obtaining an analytic dynamic model. This paper presents a 
systematic methodology for modeling the dynamics of a general 
quadruped (capable of all 6 DOF motions) with a robotic 
pendulum tail based on the virtual work principle. The 
formulation of this model is motivated by robotic tail research, 
it can also be used as an alternative approach to model the 
quadruped dynamics other than using Lagrangian and Newton-
Euler based methods. Numerical simulations are also conducted 
to verify both the forward and the inverse model. 

1     INTRODUCTION 
Recently, inspired by animals, researchers became 

interested in using robotic tails [1-8] to help maneuver and 
stabilize the locomotion [9] of bipedal and quadrupedal robots. 
In order to achieve this, understanding the mechanism of how 
the tail motion influences the body motion, i.e., the dynamic 
model of legged robots with robotic tails, is necessary. For the 
tail-body dynamics, most researchers either use simple models 
([1, 4] consider only the plenary motion for modeling while [2, 
4, 6] treating the robot as one rigid body) or model the 
dynamics based on the assumption that the feet are able to slide 
on the ground [3]. This simplification is effective for a specific 
robot [3, 4] or for the case that the robot is in the air [2]. 
However, when the robot is walking on the ground, the effect of 
the foot-ground friction cannot be ignored. In this case, forcing 
the tail to act may cause the robot to fall over. On the other 
hand, the simplified planar model is not always valid, especially 
during fast motion. The effect of the leg motions may have a 
significant contribution to the whole body dynamics. All these 
motivated us to develop a new dynamic model that allows all 

6DOF motions of the quadruped and does not rely on the sliding 
assumption.  

At present, most dynamical models of the quadruped are 
based on the Lagrangian equation or the Newton-Euler 
equations. Newton-Euler method [10] computes the dynamic 
terms recursively, which is very suitable to implement 
numerically. However, this method requires computing 
unnecessary constraint forces and is hard to investigate the 
dynamical system analytically. Lagrangian method [11, 12] is 
another popular way to formulate the dynamic model. However, 
the Lagrangian method requires computing the derivative of 
kinetic energy, which is normally hard to process, especially for 
systems with high dimensions and closed kinematic chains. In 
addition, to make the formulation easier, more generalized 
coordinates (the so-called cyclic coordinates) than the system 
degrees of freedom are used. Thus, to make the system 
determinate, additional constraint equations along with the 
differential equation are required, which yields a hard-to-solve 
differential algebraic equation (DAE). 

Other approaches proposed in the literature include Center 
of Inertia (COI) [13], floating base method [14], modular 
formulation frame [15] and virtual power [16] (Kane’s method). 
However, the basic methodologies these approaches adopt also 
belong to the above two approaches.  

Virtual work principle is another popular approach to 
derive the dynamic model of a multibody system. This method 
has the benefit of eliminating the constraint forces, which 
makes it very useful when researchers are only concerned about 
the overall motions and the actuation forces. In general, 
quadruped is such a case. Moreover, a quadruped can be 
regarded as a parallel mechanism. It is well known that for a 
parallel mechanism, the inverse dynamics are relatively easy 
while the forward dynamics are harder to derive. Thus, virtual 
work principle is widely used in parallel mechanisms [17, 18] to 
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Figure 1. The kinematic configuration of a 

quadruped with a tail 

formulate the inverse dynamics. On the other hand, due to the 
nature of virtual work (assembling the whole body dynamics by 
adding up the part dynamics), it is potentially useful to model 
the dynamics modularly. In addition, it is well known that the 
hybrid dynamics of legged robots usually have several, 
sometimes even more than ten phases. A unified way to model 
the different phases would be very useful for the research 
community. All these motivate us to use virtual work principle 
to model the quadruped dynamics. To the authors’ best 
knowledge, there is currently no dynamics modelling done by 
virtual work for quadruped robots.  

Note that this paper focuses on the usage of virtual work 
principle in the dynamic modeling of the quadruped. Therefore, 
we only considered the case that all four legs of the quadruped 
are on the ground. The rest of this paper is organized as follows. 
Section 2 presents the kinematic analysis of the mechanism, 
which includes position analysis, velocity analysis, and 
acceleration analysis. Section 3 introduces the virtual work 
principle briefly and formulates the inverse and forward 
dynamics, respectively. Finally, two numerical simulations are 
presented in section 4 to validate both the inverse and forward 
models. 

2     KINEMATIC ANALYSIS 
The kinematic configuration of the quadruped is shown in 

Fig. 1. The quadruped consists of one torso, one tail, and four 
identical legs. In this paper, since we only consider the 
dynamics when the four feet are all touching the ground, the 
quadruped essentially can be regarded as a hybrid mechanism 
such that the torso with four legs constitutes the parallel 
mechanism part, and the torso with the tail constitutes the serial 
mechanism part. Therefore, the torso is called the traveling plate 
for the traditional parallel mechanism. Each leg consists of a 
ܴܴܴܵ kinematic chain in which the universal joint on the hip is 
decomposed into two intersecting revolute joints and the feet 
are modeled as spherical joints. 

The tail is a massless bar with a point mass on the tip and is 
actuated by a universal joint connected to the body. Since there 

are 8 DOF’s for this quadruped (6 DOF’s for the parallel 
mechanism and 2 DOF’s for the tail), we choose ܙ ൌ
ሾ்ܘ	߶௫	߶௬	߶௭	ߠ௧	ߠ௧ሿ்  as the independent generalized 
coordinate set where ܘ is the position vector of the travelling 
plate center, ߶௫	߶௬	߶௭ are the rotational angles of the travelling 
plate with respect to the ݔ ݕ   and ݖ  axis of the global frame, 
respectively. ߠ௧ and 	ߠ௧ are the rotational angle of the tail with 
respect to the travelling plate.  

To define these variables accurately, inertial frame Σܵ  is 
attached on the ground. Body fixed frame Σܲ of the travelling 
plate is attached on the travelling plate center ܲ with its initial 
orientation being the same as frame Σܵ ܀ .

ௌ  is the rotation 
matrix from frame Σܲ to Σܵ. The rotation matrix ܀

ௌ  is defined 
by the roll, pitch, and yaw angles that is, rotating ߶௫ about the 
fixed x-axis first, then rotating ߶௬ about the fixed y-axis, finally 
rotating ߶௭ about the fixed z-axis. Thus, the rotation matrix is 
܀
ௌ 																																																																																																														

ൌ 
ܿ߶௭ܿ߶௬ ܿ߶௭ݏ߶௬ݏ߶௫ െ ௭ܿ߶௫߶ݏ ܿ߶௭ݏ߶௬ܿ߶௫  ௫߶ݏ௭߶ݏ
௭ܿ߶௬߶ݏ ௫߶ݏ௬߶ݏ௭߶ݏ  ܿ߶௭ܿ߶௫ ௬ܿ߶௫߶ݏ௭߶ݏ െ ܿ߶௭ݏ߶௫
െݏ߶௬ ܿ߶௬ݏ߶௫ ܿ߶௬ܿ߶௫



																																																																																																													ሺ1ሻ

 

Then the angular velocity and angular acceleration of the 
quadruped body are 

																																					 ൌ ൣ߶௫ሶ ߶௬ሶ ߶௭ሶ ൧
்
																																ሺ2ሻ 

																																					ሶ ൌ ൣ߶௫ሷ ߶௬ሷ ߶௭ሷ ൧
்
																																ሺ3ሻ 

Since the quadruped is a parallel mechanism, in essence, 
we can follow a similar procedure utilized in parallel 
mechanisms to find the necessary kinematic terms for the 
quadruped.  

 

2.1     Position Analysis 
This section solves the inverse kinematics of the 

quadruped. For each leg, the joint angles are defined as in Fig. 2 
where ߠ,, ,ߠ ∈ ሺെ2/ߨ, ,ߠ 2ሻ and/ߨ ∈ ሺ0,  2ሻ. Based on/ߨ
the kinematics configuration and vector definitions in Fig. 1, the 
vector loop constraint of leg ݅ can be written as 

܊																																		  ܋ ൌ ܌ െ ܘ െ  ሺ4ሻ																																	܉
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Figure 2. Kinematic parameters of leg  
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Expressing Eq. (4) in frame Σܲ  and denoting ܛ ൌ ܌
ሺሻ െ

ሺሻܘ െ ܉
ሺሻ in which ܉

ሺሻ is a constant vector and ܌
ሺሻ ൌ ௌ܀

܌, 
ሺሻܘ ൌ ௌ܀

ܘ, Eq. (4) can be written as 

܊																																							
ሺሻ  ܋

ሺሻ ൌ  ሺ5ሻ																																								ܛ

In this equation, ܛ is a known vector which can be calculated in 

advance and܊
ሺሻ ܋ ,

ሺሻ  are two vectors containing the three 
unknown revolute joint angles ߠ,, ߠ, and ߠ,. Thus, Eq. (5) 
has three equations and three unknowns. Solving this equation 
yields 

ߨ൫ݏܿ																							 െ ,൯ߠ ൌ
ܛܛ െ ݈௧

ଶ െ ݈௦
ଶ

2݈௧݈௦
																				ሺ6ሻ 

The rest of the two unknowns can be found successively 

,ߠ																																			 ൌ atan2ሺݏ௫,  ሺ7ሻ																																		௭ሻݏ

,ߠ																						 ൌ atan൫ܛ௬
ᇱ ௭ܛ/

ᇱ ൯ െ asin ቆ
ܣ2

ห|ܛ|ห݈௧
ቇ														ሺ8ሻ 

where ܛ௬
ᇱ  and ܛ௬

ᇱ  are the ݕ  and ݖ  components of ܛ
ᇱ ൌ

,൯ߠ௬൫܀
்
 ,൯ denotes the rotation matrix with angleߠ௬൫܀ .ܛ

,ߠ  with respect to the ݕ  axis. ܣ  is the area of triangle 
Δܪܭܨ, which can be computed by Heron’s formula 

ܣ																						 ൌ ටݏ൫ݏ െ ݈௧,൯൫ݏ െ ݈௦,൯൫ݏ െ ห|࢙|ห൯															ሺ9ሻ 

where 
ݏ ൌ ሺ݈௧,  ݈௦,   ||ሻ/2ܛ||

The position of the tail can be obtained straightforwardly by  

ܖ																																														 ൌ ܘ  ܚ   ሺ10ሻ																																			ܜ

where 
ܚ  ܜ ൌ ܀

ௌ ൫ܚሺሻ  ,௧ሻሾ0ߠ௭ሺ܀௧ሻߠ௫ሺ܀ െ݈௧, 0ሿ்൯ 
with parameters defined in Fig. 3. ܀௫ሺߠ௧ሻ and ܀௭ሺߠ௧ሻ are the 
principle rotation matrices with respect to ݔ  axis and ݖ  axis, 
respectively. 

 
2.2     Joint Jacobian Matrices 

This subsection derives the Jacobian matrices for each 
actuation joint. These matrices will be needed in subsequent 

sections. The method used here is direct differentiation of joint 
angles. Therefore, differentiating  Eq. (6) directly yields 

ߨ൫ݏܿ																																						 െ ,൯ߠ ሶ,ߠ ൌ
࢙
ሶ்࢙ 

݈௧݈௦
																				ሺ11ሻ	

which requires the differentiation of ܛ  first. Since ܛ  is 
expressed in frame Σܲ , we need to transform it back to the 

inertia frame Σܵ first. Differentiating ܛ
ሺௌሻ yields 

܀																																						
ௌܛపሶ ൌ െܞ  ሺ܌ െ ሻܘ ൈ 																		ሺ12ሻ 

where ܞ is the velocity of point ܲ. Therefore 

పሶܛ																																																							 ൌ  ሺ13ሻ																																		ܜ௦,ܒ

where ܒ௦, ൌ ሾെ܀ௌ
 ௌ܀

ሺ܌ െ  ܛ ሻሿ is the Jacobian matrix forܘ
and ܜ ൌ ሾ்ܞ ்ሿ் is the twist of the travelling plate. 
Therefore, rearranging Eq. (11) yields  

ሶ,ߠ																																									 ൌ  ሺ14ሻ																																												ܜ,ܒ

where 

,ܒ																																							 ൌ
௦,ܒ்ܛ

݈௧݈௦ߠ݊݅ݏ,
																																	ሺ15ሻ 

is the Jacobian matrix of the knee joint for leg ݅. Similarly, Eq. 
(7) is differentiated to obtain the Jacobian matrix of ߠ, 

,ܒ																															 ൌ
,ߠଶݏܿ

௭ݏ
ଶ ሾݏ௭, 0, െݏ௫ሿܒ௦,																	ሺ16ሻ 

in which ݏ௫  and ݏ௭  are the ݔ  and ݖ  components of ܛ , 
respectively. ߠሶ,  is more challenging to obtain. Instead of 
differentiating Eq. (8) directly, the ݕ part of Eq. (5) is a better 
choice. This yields 

ሶ,ߠ																				 ൌ
െݏሶ௬ െ ݈௦ ,ߠ൫ݏܿ  ሶ,ߠ,൯ߠ
݈௧ܿߠݏ,  ݈௦ ,ߠ൫ݏܿ  ,൯ߠ

										ሺ17ሻ 

Since ݏሶ௬ and ߠሶ, have been obtained in Eq. (13) and Eq. (14), 
substituting these two terms into Eq. (18) gives the Jacobian 
matrix for ߠ 

݆, ൌ
െ݈௧ߠ݊݅ݏ,ሾ0,1,0ሿܒ௦, െ ,ߠ൫ݏܿ  ,൯ߠ ௦,ܒ்ܛ

݈௧
ଶ ,ߠݏ,ܿߠ݊݅ݏ  ݈௦݈௧ߠ݊݅ݏ, ,ߠ൫ݏܿ  ,൯ߠ

																																																																																																											ሺ18ሻ

 

 
2.3     Velocity Analysis and Point Jacobian Matrices 

Velocity can be calculated by differentiating the position 
vector. Therefore, the velocity of point ܪ is given by 

,ܞ																											 ൌ dሺܘ െ ݐ݀/ሻ܉ ൌ ܞ  ൈ  ሺ19ሻ																܉

The corresponding Jacobian matrix of point ܪ is 

																																										۸, ൌ ሾܫ െ܉ ଷൈଶሿ																							ሺ20ሻ 

Velocity of point ܭ can be obtained similarly 

,ܞ											 ൌ ܞ െ ሺ܉  ሻ܊ ൈ   ܀
ௌۿ,ൣߠሶ, ሶ,൧ߠ

்
					ሺ21ሻ 

 

Figure 3. Kinematic parameters of the tail 
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where 

,ۿ									 ൌ ݈௧ 
െܿߠݏ,ܿߠݏ, ,ߠ݊݅ݏ,ߠ݊݅ݏ

0 െܿߠݏ,
,ߠݏ,ܿߠ݊݅ݏ ,ߠ݊݅ݏ,ߠݏܿ

							ሺ22ሻ 

Thus the Jacobian matrix of point ܭ is 

														۸, ൌ ሾ۷ െ܉ െ ሚ܊ ሿ  ܀
ௌۿ, 

,ܒ
,ܒ

൨ ଷൈଶ൨								ሺ23ሻ 

The velocity of point ܰ is 

ܞ																			 ൌ ܞ െ ሺܚ  ሻܜ ൈ   ܀
ௌ۹ሾߠሶ௧ ሶ௧ሿߠ

்									ሺ24ሻ 

where 

																					۹ ൌ ݈௧ 
0 ௧ߠݏܿ

௧ߠݏ௧ܿߠ݊݅ݏ ௧ߠ݊݅ݏ௧ߠݏܿ
െܿߠݏ௧ܿߠݏ௧ ௧ߠ݊݅ݏ௧ߠ݊݅ݏ

൩								ሺ25ሻ 

And the Jacobian matrix of point ܰ is 

																																										۸௧ ൌ ሾ۷ െܚ െ ܜ̃ ܀
ௌ۹ሿ																			ሺ26ሻ 

 
2.4     Actuation Jacobian Matrices 

To apply the virtual work, we need to express all the virtual 
displacements with respect to the generalized coordinates, 
which is carried out in the last two subsections by calculating 
the Joint Jacobian Matrices and the Point Jacobian Matrices. 
This subsection, instead, will use these matrices to derive the 
so-called Actuation Jacobian Matrices which are used to express 
the virtual displacements of the actuators with respect to the 
generalized coordinates. Since the actuators are placed on the 
revolute joints (each universal joint is equivalent to two revolute 
joints), the actuation Jacobian matrices can be obtained directly 
from the joint Jacobian matrices. 

Note that our quadruped has only eight degrees of freedom 
while we placed 3 ൈ 4  2 ൌ 14 actuators. The six redundant 
actuators are used to overcome singularities and improve 
controllability. To distinguish these two different groups of 
actuation forces, we use ૌ to represent the eight non-redundant 
forces and ૌ  to represent the six redundant forces. For 
convenience, ܙ ൌ ሾߠ,ଵ, ,,ଶߠ ,,ଵߠ ,,ଶߠ ,,ଷߠ ,,ସߠ ,௧ߠ ௧ሿ்ߠ  is 
chosen as the non-redundant actuation joints. ۸ఛ,  and ۸ఛ,  are 
the corresponding actuation Jacobian matrices. Thus the non-
redundant actuation Jacobian matrix can be obtained 
straightforwardly 

																																									۸ఛ, ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
,ଵܒ 0 0
,ଶܒ 0 0
,ଵܒ
,ଶܒ
,ଷܒ
,ସܒ
0⋯0
0⋯0

0
0
0
0
1
0

0
0
0
0
0
ے1
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

																										ሺ27ሻ 

as well as the redundant actuation Jacobian matrix ( ܙ ൌ
ሾߠ,ଷ, ,,ସߠ ,,ଵߠ ,,ଶߠ ,,ଷߠ  (,ସሿ்ߠ

																																										۸ఛ, ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
,ଷܒ 0 0
,ସܒ 0 0
,ଵܒ
,ଶܒ
,ଷܒ
,ସܒ

0
0
0
0

0
0
0
ے0
ۑ
ۑ
ۑ
ۑ
ۑ
ې

																											ሺ28ሻ 

 
2.5     Acceleration Analysis 

Acceleration can be computed by differentiating the 
velocity vector. Therefore, differentiating Eq. (19) yields the 
acceleration of point ܪ 

,܉																																						 ൌ ሶܞ  ሶ෩܉  ଶ܉																										ሺ29ሻ 

The acceleration of point ܭ can be obtained by differentiating 
Eq. (21) 

,܉ ൌ ሶܞ  ሺሶ෩  ଶሻሺ܉  ሻ܊  2܀
ௌۿ, ቈ

ሶ,ߠ
ሶ,ߠ

 

																			܀
ௌ ቆۿ, ቈ

ሷ,ߠ
ሷ,ߠ

  ሶۿ , ቈ
ሶ,ߠ
ሶ,ߠ

ቇ																										ሺ30ሻ 

Similarly, the acceleration of point ܰ is obtained from Eq. (24) 

܉		 ൌ ሶܞ  ሺሶ෩  ଶሻሺܚ  ሻܜ  2܀
ௌ۹௧ ቈ

ሶ௧ߠ
ሶ௧ߠ

 

																								܀
ௌ ቆ۹௧ ቈ

ሷ௧ߠ
ሷ௧ߠ

  ۹ሶ ௧ ቈ
ሶ௧ߠ
ሶ௧ߠ

ቇ																															ሺ31ሻ 

Note that ۿሶ ,  and ۹ሶ ௧  are the derivatives of ۿ,  and ۹௧ , 
respectively, which can be directly obtained from Eq. (22) and 
Eq. (25), respectively. 

3     FORMULATION OF THE QUADRUPED DYNAMICS 
USING VIRTUAL WORK PRINCIPLE 

Based on the virtual work principle, for an N rigid body 
system, the equations of motion can be stated as 

						ൣ۸௫,
் ሺ۴ െ పሶܞ݉ ሻ  ۸ఠ,

் ሺۻ െ ۷పሶ െ ۷ሻ൧ ൌ 0

ே

ୀଵ

				ሺ32ሻ 

where ۴ and ۻ are the active force on body ݅. Moreover, ۸௫,, 
۸ఠ,  are the Jacobian matrix for the virtual linear and angular 
displacement respectively. ۷ is the inertia matrix for body ݅ and 
ܞ ,   are the linear and angular velocity. All these terms are 
measured in the inertial frame. 

Although Eq. (32) expresses the full dynamics (both 
inverse and forward) of the multibody system, the forward 
dynamics is usually very hard to compute due to the complexity 
of the Jacobian matrices and Coriolis terms. A practical way to 
compute the forward dynamics is to use numerical methods 
(such as Matlab/Simulink) to solve Eq. (32). In this section, the 
inverse model is formulated first, thanks to its straightforward 
relationship with Eq. (32). After obtaining the inverse dynamics, 
the forward model can be obtained directly from the inverse 
model by extracting the corresponding terms.  

4 Copyright © 2018 ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 12/13/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



3.1     The Virtual Work for Leg  
Since each thigh, shank and the tail in the quadruped are 

regarded as ideal bars (evenly distributed line mass), before we 
go into the quadruped dynamics, we would like to derive the 
virtual work for each leg first by using the technique introduced 
in [17]. That is, the virtual work of an ideal bar can be lumped 
to its two endpoints. Figure 4 shows the schematic diagram of a 
leg and an ideal bar with their kinematic parameters.  

Hip

Knee

Foot

ha

ka

fa

Thigh

Shank

thm

shm

         

1

x

1a

2 2a

G

1v

2v
 

Figure 4. One leg with its foot touching the ground 
(left) and the velocity distribution on a rigid bar (right) 

  
Therefore, for an ideal bar as shown in Fig. 4, the virtual 

work due to the inertia force can be computed by the integral 

ܹߜ																																		 ൌ න ઼ሺݔሻ܉ሺݔሻ
݉
ܮ
ݔ݀




																									ሺ33ሻ	 

in which 

઼ሺݔሻ ൌ ቀ1 െ
ݔ
ܮ
ቁ઼ଵ 

ݔ
ܮ
઼ଶ 

ሻݔሺࢇ ൌ ቀ1 െ
ݔ
ܮ
ቁ ଵ܉ 

ݔ
ܮ
 ଶ܉

are the linear interpolations of the virtual displacement ઼ଵ ઼ଶ 
and the acceleration ܉ଵ ܉ଶ along the bar, respectively. ܮ is the 
length of the bar. Evaluating Eq. (33) directly yields 

ܹߜ																	 ൌ ்ܙߜ
݉
3
ቆ۸ଵ்܉ଵ  ۸ଶ

ଶ܉் 
۸ଶ
ଵ܉்  ۸ଵ்܉ଶ

2
ቇ							ሺ34ሻ 

where ܙ is the generalized coordinates vector, ۸ଵ and ۸ଶ are the 
corresponding Jacobian matrices for the two endpoints (This 
implies ઼ଵ ൌ ۸ଵܙߜ and ઼ଶ ൌ ۸ଶܙߜ). Applying this formula on 
the thigh and shank of each leg gives the virtual work ߜ ܹ,ூ 
of leg ݅ due to inertia force 

ߜ ܹ,ூ ൌ ሾ۸,்ܙߜ
் ൬

݉௧  ݉௦

3
,܉ 

݉௧

6
 ,൰܉

																														۸,
் ቀ

݉௧

3
,܉ 

݉௧

6
 ሺ35ሻ																										,ቁሿ܉

where ݉௧  and ݉௦  are the mass of the thigh and shank 
respectively.  

The virtual work ߜ ܹ,ீ due to gravity is obtained as 

ߜ								 ܹ,ீ ൌ ்ܙߜ ൬۸,
் ݉௧  ݉௦

2
 ۸,

் ݉௦

2
൰ ሾ0,0, െ݃ሿ்			ሺ36ሻ 

3.2     Formulating the Inverse Dynamics of the Quadruped 
The inverse dynamics involved finding the actuation force 

given the motion trajectory of the quadruped. Therefore, the 
inverse dynamics can be obtained directly from Eq. (32) 

																						۸ఛ,் ૌ  ۸ఛ,் ૌ ൌ ૌ  ૌ௧ ૌ,

ସ

ୀଵ

																			ሺ37ሻ 

where ૌ  is the non-redundant actuation torque, ૌ  is the 
redundant actuation torque, ૌ , ૌ௧  and ૌ,  are the generalized 
torques contributed by the travelling plate, the tail and the ݅th 
leg, respectively. ۸ఛ,்  and ۸ఛ,்  are the corresponding Jacobian 
matrices for the actuation torque. Their detailed expressions are 

࣎					 ൌ ۸,௫
் ݉ሺܞሶ െ ሾ0,0, െ݃ሿ்ሻ  ۸,ఠ

் ሺ۷ሶ  ۷࣓ሻ								ሺ38ሻ	 

					ૌ௧ ൌ ۸௧்݉௧ሺ܉ െ ሾ0,0, െ݃ሿ்ሻ																																																	ሺ39ሻ 
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൩൱ 

												۸,
் ൭

݉௧

3
,܉ 

݉௧

6
,܉ െ
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0
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in which ݉ and ݉௧ are the mass of the travelling plate and the 
tail respectively, ݃  is the gravity constant. Note that ૌ,  is 
obtained by extracting the coefficient terms of ܙߜ  from the 
summation of Eq. (35) and Eq. (36). Moreover, the inertia 
matrix of the travelling plate ۷, matrices ۸,௫ and ۸,ఠ have the 
form 

۷ ൌ ܀
ௌ ۷

ሺሻ܀ௌ
 

۸,௫ ൌ ሾ۷ଷൈଷ ଷൈହሿ 
۸,ఠ ൌ ሾଷൈଷ ۷ଷൈଷ ଷൈଶሿ 

Note that Eq. (37) has fourteen actuation forces (ૌ  has 
eight components and ૌ  has six) while the dimension of the 
equation is only eight (corresponds to the eight independent 
generalized coordinates). This means that if we regard all 
actuation forces as unknowns, then there exist infinitely many 
solutions. Indeed, this is an intrinsic characteristic for an over-
actuated system in which there are infinitely many choices of 
actuation forces to generate the same motion. Therefore, to 
solve Eq. (37) properly, additional information is required, such 
as the profile of ૌ . The simplest ૌ  profile is ૌ ൌ 0 . This 
simplifies Eq. (37) to 

																												ૌ ൌ ۸ఛ,்
ିଵ ൭ૌ  ૌ௧ ૌ,

ସ

ୀଵ

൱																			ሺ41ሻ 

Obviously, the prerequisite for this solution is that ۸ఛ,  is 
nonsingular. 
 
3.3     Formulating the Forward Dynamics from the Inverse 
Dynamics 

In Eq. (37), if we can express all the kinematic terms 
(acceleration, velocity, and position) with generalized 
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Figure 6. Comparison of simulated motion by Adams 
(solid lines) and Simulink (dashed lines) 

 

From Fig. 6, the quadruped motion computed by our model 
does match the simulation results, as generated by Adams. 
However, the errors between these two approaches are also 
noticeable, especially for the z component of the torso CM 
position ܘ. These errors may be the result of two aspects: (1) 
numerical error, (2) model error. The numerical error includes 
the error drift of the integrator, the accuracy loss while 
computing ିۻଵ  for Eq. (43), and the error induced by the 
DAE/ODE solver (Adams uses GSTIFF-I3 solver with a 
tolerance of 1E-3 while Simulink uses fixed step ODE4 solver. 
Both implement a time step length of 0.0001s). The model error 
is due to the assumptions that we considered each thigh and 
shank as an ideal bar and the geometric center of the torso as its 
mass center, which is not valid in Adams.  
 
4.2     Verification of the inverse model 

The forward model can be used to verify the inverse model. 
That is, using the inverse model, we can calculate the required 
torque and input this torque into the forward model. 
Theoretically, if the inverse model is correct, the forward model 
should generate the same desired motion. However, due to the 
error drift of the numerical integrator (referring to Fig. 6 and 
Fig. 8), the simulated motion deviates from the desired motion 
after a short period of time (less than 0.2s). Figure 8 shows the 
deviation of the simulated motion (circled line) from the desired 
motion (solid line).  

Another important source for the deviation might come 
from the inverse model itself. In the simulation, Eq. (41) is used 
to compute the non-redundant actuation forces ૌ , for which  
۸ఛ,  has to be invertible. However, in practice, letting ۸ఛ,  be 
invertible is not enough. The numerical error of computing 
۸ఛ,

ିଵ  increases dramatically as ۸ఛ,  gets closer to its 
singularities. Since ۸ఛ, consists of ܒ,ଵ  ܒ,ଶ, ܒ,ଵ, ܒ,ଶ, ܒ,ଷ, ܒ,ସ, 
 ௧, so any two of these being the same will lead to ۸ఛ,ܒ ௧ andܒ

being singular. In our simulation, we observed that ܒ,ଵ  and 
 ,ଶ were very close at multiple points. This verifies the errorܒ

due to the numerical inversion of ۸ఛ,. 
 

Therefore, to eliminate these errors, a feedback controller 
(shown in Fig. 7) is applied to the system, to observe the 
trajectory of the compensation torque given by the feedback 
block. The results are shown in Fig. 8 and Fig. 9, which show 
that the compensation torque asymptotically approaches zero. 
This means that the actuation torque computed by the inverse 
model does generate the desired motion after the numerical 
error is under control. Figure 8 also shows the resulting 
simulated trajectory by using the controller. For this simulation, 
the desired motion is a pitch motion is given by 

ݍ ൌ 0.2, 0.3, 0.4,
ߨ
36

݊݅ݏ ൬
ߨ2
0.3

൰ݐ , 0, 0, 0,
ߨ
18

݊݅ݏ ൬
ߨ2
0.3

ݐ  ൰൨ߨ
்

 

and the redundant actuation force is ߬ ൌ ሾ0, 0, 0, 0, 0, 0ሿ். 
 

Figure 8. Simulated quadruped behaviors with control 
(dashed lines) and without control (circled lines). 

Solid lines show the desired trajectories. 

dq
dq e
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c
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dq dq

d d

q

Figure 7. The feed forward control scheme used in 
the inverse model verification
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Figure 9. The required torque and the compensation 
torque ૌ܋ to generate the desired motion 

5     CONCLUSION 
By applying the virtual work principle, this paper presented 

a methodology to formulate the forward and inverse dynamical 
models for a general quadruped with a robotic tail. This model 
will be used to analyze the influence of a tail on the motion of 
the quadruped. However, the same model can also be used as an 
alternative for the Lagrangian and Newton-Euler based models. 
The formulation process follows a standard procedure of 
modeling multibody dynamics. At first, the kinematic analysis 
is conducted to obtain all necessary Jacobian matrices and 
accelerations, then, these terms are substituted in the equation of 
motion formulated by the virtual work principle. Lastly, these 
terms are rearranged to derive the inverse and forward 
dynamical models. This paper also performed a numerical 
experiment which showed that the forward dynamical model 
did predict the same motion as simulated in Adams. The inverse 
dynamical model did generate the required actuation torque 
used in the forward dynamics simulation. 

Future work will focus on understanding the influences of a 
tail on the motion of a quadruped as well as on modeling the 
hybrid system for locomotion. Eventually, a quadruped with a 
tail will be used to test the maneuverability and stabilization of 
the robot during fast motions. In addition, future work will be 
focused on implementing a serpentine robotic tail instead of a 
pendulum-like structure, due to its ability to provide better 
maneuverability. 
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