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ABSTRACT 

This paper presents a wireless sensor system developed to 
use RC helicopter dynamics to measure wind turbulence. Wind 
turbulence is a safety concern for naval helicopter operations 
due to typical scarcity of landing/takeoff area on naval vessels. 
Wind turbulence affects the dynamics of helicopters by creating 
uneven thrust on the rotor blades. The proposed telemetry 
system, when retrofitted on an RC helicopter, extracts these 
external disturbances in the helicopter’s dynamics and maps the 
wind conditions. This study focuses on learning the helicopter’s 
dynamics in controlled wind conditions using machine learning 
algorithms. The presented telemetry system uses sensors such 
as an Inertial Measurement Unit (IMU), optical trackers, and 
GPS sensors to measure the dynamics of the flying RC 
helicopter. The system also measures the pilot’s radio inputs to 
account for pilot inputs in the helicopter’s dynamics. The 
telemetry system is trained and tested in a large indoor facility 
where turbulent wind conditions were created artificially using 
large wind circulation fans. 

NOMENCLATURE 

θ0, θ1, θ2 Collective, cyclic pitch, and cyclic roll  
θb Rotor blade pitch angle  
η Relative wind angle 
CA Rotor blade lift coefficient 
c Main rotor blade airfoil chord length 
ρ Air density 
U Wind speed relative to blade element 
ψ Rotor blade position 
Ω Rotor speed 
Ixx, Iyy, Izz Helicopter’s moment of inertia 
p, q, r Pitch, roll and yaw rates 
L,M,N Moment along pitch, roll and yaw axis 

θ, φ Helicopter pitch and roll angles 
g Acceleration due to gravity 

 
INTRODUCTION  

Operation of rotary wing aircraft aboard ships and other 
sea based platforms is a very risky and challenging task. The 
situation becomes even more complicated when the 
surrounding air interacts with the cruising ship’s superstructure 
to leave behind a trail of wind disturbance (involving both 
steady state and turbulent wind flow), or ship air wakes. These 
ship air wakes interacting with helicopters operating in close 
vicinity to the ships can result in unwanted oscillations, which, 
when combined with limited landing deck area, pose serious 
safety concerns. To mitigate these operational risks, ‘safe 
launch and recovery envelopes’ are prescribed for each class of 
naval vessels in order to avoid high air wake zones [1]. To 
determine these safe launch and recovery envelops, 
Computational Fluid Dynamics (CFD) models are used. 
Significant research has been done to develop high fidelity 
CFD models in order to study the interaction of wind with 
moving ship’s superstructure and then to predict air wake 
patterns [2,3]. However, validation and refinement of such 
CFD models require extensive experimental data. To obtain 
experimental ship air wake data for the validation of CFD 
models, the most commonly used methods are wind tunnel 
testing and in-situ wind measurements using anemometers. 

Wind tunnel testing is the most popular tool for 
experimentally validating wind-solid body interactions in the 
aerospace science community. During testing, scaled down 
model of test bodies (vessels) are made to interact with 
controlled streamlined wind flow (to match Reynold’s number) 
and the resulting turbulent wind pattern is measured. Such wind 
tunnel setups utilize a variety of anemometric modalities 
including laser sensing [4], hot wire anemometers [2,5] and 
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Particle Image Velocimetry [6,7]. Although the transducers 
used in the wind tunnels are extremely sensitive, due to very 
high cost they cannot be deployed outside the limited test area 
of a wind tunnel. Furthermore, wind tunnels cannot generate 
fine details of flow patterns because of the losses in structural 
details due to the scaling of the test model. Additionally, errors 
in flow pattern arising from the model holder and wind tunnel 
parts must be accounted for in the measurements.  

Use of outdoor anemometers is another common means for 
in-situ wind pattern measurement. Multiple ultrasonic 
anemometers are placed at different locations on the flight deck 
of the naval vessels and the measurements are compared with 
CFD/Wind Tunnel testing results [2,4,8,9]. In this 
methodology, the high cost of the anemometers limits the 
number of anemometers used simultaneously, whereas moving 
the sensors to different positions is time consuming. To 
overcome this limitation, Mallon et al. [10] in a similar study 
used airborne anemometers mounted on a quadrotor to map 
ship air wakes. This requires compensation of the UAV’s own 
wakes and motion relative to the inertial frame of reference. 

To overcome these limitations Kumar et al. have proposed 
the use of RC helicopters with machine learning algorithms to 
extract ship air wake patterns [11–15]. Air wakes 
aerodynamically affect RC helicopters the same way they do to 
full-scale helicopters. Therefore, helicopter dynamics can be 
mapped to wind conditions. Whereas previous work was 
focused on modelling helicopter’s response to pilot inputs in 
absence of wind turbulence, this paper models the same in a 
controlled wind environment. This paper presents a study on 
modeling the helicopter’s dynamics in different wind 
conditions using neural networks and then using the same 
model to estimate wind conditions.  

 
BACKGROUND  

Helicopters are rotary wing aircraft, which use thrust 
vectoring for attitude control and maneuvering. A swash plate 
mechanism in the rotor hub plays a pivotal role in the 
helicopter’s control by transferring actuator inputs from the 
stationary (not-rotating) helicopter fuselage to the rotating 
blades [16]. The swash plate makes rotor pitch angle a function 
of rotor position. The pilot inputs received by the helicopter’s 
main rotor consist of three components: roll cyclic, pitch cyclic, 
and collective. The roll and pitch cyclic inputs result in a 
differential rotor pitch angle, which helps the helicopter to tilt 
and maneuver by creating differential thrust along the pitch and 
roll axes. Collective inputs on the other hand, result in uniform 
lift-off thrust throughout the rotor disk area by contributing to 
offset the rotor pitch value.  

Modelling the helicopter as a 3D rigid body, the Newton-
Euler equations for the rotational motion of the helicopter can 
be represented as follows: 

   
   
   

zz

xx yy zz mr g

yy xx mr g

zz xx yy mr tr

I p qr I I L L

I q rp I I M M

I r pq I I N N

   
   
    





               (1) 

Here subscripts mr and g represent ‘main rotor’ and 
‘gravity’ respectively. Fig. 1A shows the frame of reference 
assignment for the helicopter. The gravity component in the 
helicopter’s rotation dynamics is a result of the fact that the 
center of mass and the center of rotation of the helicopter are 
not the same. This results in a pendulum-type restoring moment 
(Fig. 1C, 1D) whenever the aerodynamic loading on the rotor 
blades tilt the helicopter. The main rotor moment is primarily 
composed of two components: pilot inputs and wind conditions 
[16,17]. If the helicopter’s main rotor blade is assumed to be 
composed of infinitesimally thin airfoil elements (of thickness 
drb), then the differential liftoff (dl) generated by each element 
can be computed as follows:  
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Here Un and Ut are the normal and tangential components 
of the wind (U) relative to the moving rotor blade air foil in the 
rotor plane. From (2) it is clear that the thrust generated by the 
rotor blades depends on both the wind direction (η) and pilot 
inputs (θb).  
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Figure 1. Helicopter dynamics: (A) Frame of reference 

assignment, (B) Induced rotor inflow, (C) Helicopter pitch 
dynamics and (D) Helicopter roll dynamics. 

Because of mechanical constraints in the swash plate, it is 
straightforward to model the rotor pitch angle; however 
modelling the wind angle is very difficult due to unpredictable 
wind flow in turbulent environments. The wind angle relative 
to the rotor blades is thus extracted from steady state flow 
conditions. The steady state external wind flow is modelled 
using a 12-parameter linear model as shown below: 
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      (3) 

 
Here sψ and cψ represent sine and cosine of the rotor 

position angle. If the rotor blade airfoil section under 
consideration is at a radial distance rb from the rotor hub 
assembly, then the wind relative to the airfoil due to its motion 
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is [0 Ωrb 0]T and using this information, it is possible to 
estimate the wind relative to the blade. Here, effects of rotor 
flapping are ignored and it is assumed that the main rotor 
blades rotate in a fixed plane with respect to the helicopter’s 
fuselage. 
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By using equations (2) and (4), the wind inclination angle 

can be computed as follows:  
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Here, vih is the induced rotor inflow, which is assumed to 

be constant for near-hover flight conditions. As the rotor speed 
term in the denominator is much larger than the remaining 
terms, the wind inclination angle (η) is proportional to az and 
bz, coefficients of the wind model which represent vorticity in 
pitch and roll axis respectively in the rotor plane. With η being 
proportional to rotor blade liftoff (2), it is also proportional to 
the main rotor moment along the roll and pitch axis (1) [17]. 
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Figure 2. Sensing system hardware setup. 

SYSTEM HARDWARE SETUP  
The proposed sensor system consists of two custom-made 

instrumentation modules, referred to as the rover module and 
the base module (Fig. 2). The rover module is retrofitted onto a 
T-Rex 600 series RC helicopter, and primarily consists of an 
aviation grade INS/IMU (VN200) sensor. The base module 
communicates with the rover module over a low latency Wi-Fi 
network to receive the helicopter’s dynamics wirelessly. The 
base module is also equipped with an RC receiver to receive 
pilot input and then relay the pilot inputs along with the 
helicopter dynamics to a PC for processing and recording over 
a USB link. In addition to the helicopter’s dynamics, the 
helicopter’s position is equally important.  

The proposed system uses the Linear Optical Sensor Array 
based tracking system [18] for tracking the helicopter’s spatial 

motion in an indoor environment. A cubical shaped active 
marker was retrofitted onto the helicopter (as shown in Fig. 2) 
to measure the helicopter’s position, linear velocity, and 
attitude relative to a stationary tracking device during the 
experiments. The system was able to acquire helicopter 
dynamics at an average update rate of 140 Hz and position 
estimates from the LOSA tracker at 320 Hz. Fig. 3 shows the 
electrical schematics of the rover and the base module. 
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Figure 3. Electrical schematics of:  (A) Rover module, and (B) 

Base module. 

To obtain a controlled wind dataset for training the system, 
a wind mapping platform was created. The wind mapping setup 
used two 24-inch diameter wind circulation fans to create an 
artificial wind flow (Fig. 4A). The system used a Young® 
81000 3-axis ultrasonic anemometer mounted on a pole (with 
caster wheeled base) as the primary sensor [19]. The 
anemometer was interfaced with using an ARM® Cortex M4 
microcontroller through analog inputs. The micro controller 
also hosted a 9-axis IMU with AHRS implementation. The 
attitude-corrected wind flow measurements were sent to a PC 
for recording over a Wi-Fi network. The anemometer was also 
retrofitted with a LOSA marker for tracking the motion of the 
anemometer with respect to the already stationary LOSA 
tracker (Fig. 4B, 4C). The anemometer readings were 
compensated for its motion and converted in the tracker’s 
frame of reference. 
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Figure 4. (A) Wind mapping setup[17]; (B) Ultrasonic 
anemometer, (C) Electrical schematics. 
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INDOOR EXPERIMENTATION  
To test the capability of the telemetry system, the 

helicopter was flown in a wind controlled indoor environment. 
To generate artificial wind conditions, a setup of two air 
circulation fans placed opposite to each other was implemented 
(shown in Fig.  4A).  

To map the wind flow, the anemometer was moved 
between the two fans at different heights and the wind flow 
was measured, along with the position and velocity of the 
anemometer. The recorded data was then interpolated using 
bilinear interpolation to a grid of size 5cm to obtain the steady 
state flow field as shown in Fig.  5. 
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Figure 5. Measured steady state flow field. 

In addition to the steady state flow, the standard deviation 
of the wind speed (over a duration window of 2s) was also 
computed to characterize wind turbulence in the region of 
interest. Fig. 6 shows the distribution of the standard deviation 
of the wind speed (in the form of slice plot) for the flow field 
shown in Fig. 5. The average value of turbulence (std. 
deviation of wind speed) was estimated to be 28 mm/s. 
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Figure 6. Measured wind turbulence: (A) Spatial Distribution, 

(B) Distribution histogram for Wind Speed 

The wind map setup created with the two fan setup 
provided ground truth for the wind-flow conditions to be tested 
with the proposed instrumentation system. The RC helicopter 
mounted with the rover module and LOSA marker was flown 

in the test volume and quantities like angular acceleration, 
angular rates, pilot inputs, and attitude (angles) were recorded.  

 
SYSTEM TRAINING AND RESULTS  

As shown in the previous section, the wind conditions 
affect the helicopter’s dynamic response to pilot input. 
Therefore, if the helicopter’s dynamic model with state 
variables is known, it is possible to extract wind conditions 
from the helicopter’s dynamics measurements. The proposed 
system uses Back Propagation Neural Network (BPNN) [20] to 
find the mapping between the helicopter dynamics variables 
and wind condition. As suggested in (1), angular acceleration 
measurements of the helicopter depend on pilot inputs, wind 
conditions, angular rate measurement, and tilting angle (roll 
and pitch). Thus, the proposed system uses two BNNNs to 
predict wind vorticity (Roll/Pitch) from  eight-dimensional 
input vectors consisting of three swash plate pilot inputs, three 
channel angular rates, the measured angular acceleration 
(Roll/Pitch) and the tilting angle (Roll/Pitch). For training and 
testing of the networks, the wind vorticity of the steady state 
flow field was obtained by fitting the data on the linear model 
shown in (3). The estimated wind vorticities in the inertial 
(LOSA tracker’s) frame of reference were converted into the 
helicopter’s frame of reference based on attitude estimates 
obtained from the LOSA tracker and fed to the neural network. 

 
Figure 7: Neural Network prediction results (blue) with 

measured estimates (red) for wind vorticity. 

To model the helicopter’s nonlinear dynamics, 2-hidden 
layered BPNNs were trained. The BP Neural network topology 
was selected through trial and error. The system was trained 
with the number of neurons in hidden layers varied from 4 to 
15. It was observed that the neural networks with hidden layer 
topology {8, 6} and {10, 5} deliver the best prediction 
accuracy. To prevent overtraining of the system, 10-fold cross 
validation [21] was used with the back propagation training 
algorithm. The networks were trained using around 7100 data 
samples and tested on around 15000 samples. Fig. 7 shows the 
prediction results for the two neural networks predicting 
ambient wind vorticity on a subset of the test database. Fig. 8 
shows the histogram plot from the distribution of the absolute 
prediction error in wind vorticities. 
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Figure 8. Neural Network output error Distribution. 

The trained networks were also tested by comparing 
generated wind vorticity patterns with measured steady state 
vorticity. Fig. 9 shows qualitative comparison between the 
predicted vorticity pattern and the measured vorticity pattern in 
the form of 3D slice plots. High correlation is visible in wind 
vorticity distribution in the Z-Y plane (right column). 
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Figure 9. Wind vorticity patterns: (A) Predicted Vorticity along 

x axis, (B) Measured Vorticity along x axis, (C) Predicted 
Vorticity along y axis, (D) Measured Vorticity along z axis. 

CONCLUSIONS 
This paper presented a novel study using helicopter 

dynamics for sensing and mapping wind flow patterns in an 
indoor environment. The system was able to estimate 
artificially created turbulence patterns during indoor 
experiments with fair accuracy. The presented system removes 
rotor blade dynamics in the helicopter’s angular acceleration 
data by using a low pass filter which distorts the low frequency 
dynamics. The authors plan to add a rotor blade tracking sensor 
to the system which then can be used to estimate rotor position 
and dynamics, and will significantly improve the accuracy of 
the system. 

System limitations: The system currently relies on the 
rotational impact of wind turbulence and hence can only 
estimate the vorticity aspect of air wakes. By including the 
helicopter’s linear drift in the system model, the laminar flow 
component of the wind pattern can also be estimated using the 
proposed system. The system also assumes steady state flow 
conditions during training and testing of the system, but 
turbulence is present in the system as shown in Fig. 6. This 
turbulence is a major source of prediction error in the neural 
networks. 
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