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ABSTRACT 
This paper presents the design and analysis of an 

underactuated, cable driven mechanism for use in a modular 
robotic snake. The proposed mechanism is composed of a chain 
of rigid links that rotate on parallel revolute joints and are 
actuated by antagonistic cable pairs and a multi-radius pulley. 
This design aims to minimize the cross sectional area of cable 
actuated robotic snakes and eliminate undesirable 
nonlinearities in cable displacements. A distinctive feature of 
this underactuated mechanism is that it allows planar 
serpentine locomotion to be accomplished with only two 
modular units, improving the snake’s ability to conform to 
desired curvature profiles and minimizing the control 
complexity involved in snake locomotion. First, the detailed 
mechanism and cable routing scheme are presented, after 
which the kinematics and dynamics of the system are derived 
and a comparative analysis of cable routing schemes is 
performed, to assist with design synthesis and control. The 
moment of inertia of the mechanism is modeled, for future use 
in the implementation of three-dimensional modes of snake 
motion. Finally, a planar locomotion strategy for snake robots 
is devised, demonstrated in simulation, and compared with 
previous studies. 

1. INTRODUCTION 
Snake robots have been a subject of great interest in the 

robotics community due to their potential to more easily 
navigate in cluttered or confined environments than traditional 
vehicles [1],[2]. Snake robots, like their biological counterparts, 
are comprised of serially linked segments, and locomote 
primarily by exploiting anisotropic frictional contact with their 
environment to produce propulsive forces [3]. The lateral 

undulation gait, more commonly referred to as serpentine or 
slithering motion, allows a snake robot to achieve forward 
movement by propagating sinusoidal waves from head to tail. A 
condition for this motion is that the robot must make greater 
frictional contact normal to its body length than along its body 
length [1],[4]. The strength of such full-body locomotion 
strategies, which are employed in nature by a diverse array of 
marine and land animals, is that any part of the robot’s body 
may be used for locomotion [3],[5]. In comparison to wheeled 
or legged robots, the ability of snake-like mechanisms to engage 
any of their degrees of freedom (DOFs) in this 
“hyperredundant” fashion provides them with significant 
advantages in irregular terrain [6]. However, the large number 
of DOFs involved in locomotion also considerably complicates 
control [7]. 

The majority of the snake robots in the literature consist of 
serially chained, rigid links, with each joint angle actuated 
separately [8], [9], [10]. With fewer joints per length than their 
biological counterparts, these robotic snakes must drive their 
joint angles at greater amplitude in order to approximate the 
same curvature profile as a biological snake of equal length. 
Such designs increase link mass and cross sectional area and 
require sophisticated motor control [11]. To address these 
issues, we propose a single degree-of-freedom, modular 
bending mechanism, which may be substituted in a snake robot 
in place of straight links. Each module is composed of four 
rigid links, whose relative angles are controlled by a multi-
radius pulley so that the mechanism approximates a standing 
sinusoidal wave. Locomotion and turning may thus be achieved 
with only two, single-DOF modules, while the loss of 
redundancy can be compensated for by passively conforming to 
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obstacles with elastic elements, resulting in simplifications to 
both design and control. 

The work described in this paper is part of ongoing 
research on cable-actuated mechanisms with serpentine 
[12],[13] and continuum [14]–[18] structures, for use in robotic 
tails and snakes. This paper presents the design and analysis of 
the Planar Bender mechanism for use in a reduced-DOF, 
modular snake robot and is organized as follows: Section 2 
provides a review of previous empirical investigations of snake 
locomotion and robotic snake designs. Section 3 presents the 
mechanical design and cable-routing method of the bending 
mechanism. Section 4 presents kinematic and dynamic analyses 
and explores cable routing schemes. Section 5 presents a 
preliminary locomotion strategy and its relation to prior snake-
robot control schemes. Remarks and plans for future work are 
discussed in Section 6. 

2. BACKGROUND AND DESIGN MOTIVATION 
This section provides an overview of prior research into the 

design of snake-like mechanisms, and empirical studies of 
locomotion in biological snakes. Essential properties of snake 
robots are described, including friction characteristics, types of 
hyperredundant structures, the use of direct-drive versus cable-
actuated systems, and compliance. The design motivation for 
the bending mechanism and general requirements for its 
operation are then discussed. 

2.1 Snake Robots 
Early observational studies of serpentine motion in snakes, 

such as those of W. Mosauer and J. Gray, provided foundational 
insight into the basic mechanism by which ground friction in the 
transverse and lateral directions of a snake’s body propels it 
forward, and the importance of the snake’s curvature profile for 
locomotion [19],[5]. Curvature in biological snakes is 
controlled by an intricately arranged web of axial muscles, 
which, as shown by J. Gasc, produce angular displacements 
between adjacent vertebrae in the range of 10 to 20 degrees 
[20]. Significant angular displacements in biological snakes 
thus must involve underactuated groups of vertebrae. 

Work on snake robots was initiated by S. Hirose’s 
development of ACM III, which demonstrated serpentine 
motion on a flat plane [21]. Hirose’s design employed passive 
wheels to produce the anisotropic ground friction characteristics 
necessary for forward locomotion. Passive wheels are a 
common means of producing anisotropic ground friction in 
snake robots, but may fail to make effective contact in cluttered 
or irregular environments. In biological snakes, anisotropic 
friction is instead produced by the geometrical and mechanical 
properties of scales [22]. B. Jayne studied the mechanical 
properties of the skins of six snake species and noted 
correlations between skin characteristics and locomotion style 
[23]. Marvi et al., studied active control of scales in corn snakes 
and developed the two-link inchworm robot ScalyBot, to study 
the effects of actively adjusted scales on locomotion, on flat and 
inclined planes [24]. Grooves, static scales, and friction skins 

have also been widely used to incorporate the desired friction 
characteristics directly into the construction of a snake robot’s 
outer shell, as in the 3D printed scales employed by the Scaled 
Snake Robot, or the bristle-covered fabric used in the MMIR 
robot [25],[26]. 

The cyclical curving motion executed during serpentine 
motion may be achieved mechanically using either serpentine or 
continuum type mechanisms. Serpentine designs, which are 
defined by their serial chain of rigid links, may closely 
approximate continuous curves, provided a sufficient level of 
articulation, with the benefit of robust sub-structures convenient 
for housing actuation. Continuum designs, which make use of a 
compliant backbone to achieve continuous bending, eliminate 
the need for discrete joints, and are thus well suited to small-
scale applications. However, continuum mechanisms exhibit 
problematic sagging under loading and pose difficulties to 
conventional means of modeling and sensing. Hybrid 
approaches include the use of multiple backbones [27], 
interleaved flexible and rigid links [28], and spherical joints 
situated around an elastic core [29]. 

The majority of snake robots in the literature are serpentine 
type mechanisms and employ direct drive at each link to 
maximize joint torque and drive stiffness. This design choice is 
incorporated by a wide variety of snake robots, including the 
Wheeko robot [7], constructed to investigate serpentine motion 
on a flat plane; the Kulko robot, designed to investigate 
interaction with obstacles [7]; the reconfigurable PolyBot [30]; 
and the ACM R5 [31], which demonstrated locomotion in water 
with the use of fins mounted on each link. Direct drive is also 
widely used in snake robots which employ active wheels or 
treads, such as the ACM-R4 and OmniTread OT-8, respectively 
[32],[33]. 

Cable-driven actuation in both serpentine and continuum 
type robots has primarily been pursued in the context of 
manipulators, as a means of decreasing mass and cross sectional 
area requirements by allowing the mechanism’s actuators to be 
located away from the joints they actuate [34]. Ota et al. built 
and tested a serpentine-type robot consisting of a series of 
cylindrical links only 11 mm in radius, and actuated by 
internally routed cables [35]. Ouyang et al. developed a 
continuum-type robot composed of a three-segment, super-
elastic nitinol rod backbone with concentric discs used for cable 
routing [27]. Cable actuation schemes allowed these robots to 
be small and highly articulated, but required the use of multiple 
externally driven pulleys. 

In self-contained mechanisms, where space is limited, the 
use of cabling requires that pulley and actuation systems be 
made as compact as possible. Antagonistic cable pairs and 
multi-radius pulleys may be used in this context to consolidate 
the actuation of multiple links. A variety of mechanisms which 
use antagonistic pairs of cables to generate joint motion have 
been designed, including Hillbery and Rolamite joints, which 
employ cylindrical rollers actuated by antagonistic bands to 
produce low-friction, planar bending [36]. A number of cable 
actuated robotic hand designs have incorporated antagonistic 
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cable pairs, including the DLR, a versatile, variable stiffness 
robotic hand, and the PISA/IIT SoftHand, which exploits 
underactuated, compliant cabling to produce adaptive grasping 
behavior [37],[36]. A disadvantage of straight-line routing of 
antagonistic cables in bending mechanisms is that 
displacements in antagonistic cable segments may exhibit 
nonlinearities during bending, depending on the details of the 
routing scheme. This challenge is discussed in more detail in 
Section 4. 

Compliant elements may be included in snake robots to 
filter high frequency disturbances, shield motors, and enable 
automatic conformation to obstacles, highly desirable properties 
for robots that engage their entire bodies during locomotion 
[38], [39]. Rollinson et al. developed a snake robot that 
employed series elastic actuators (SEAs) consisting of conical 
rubber elements placed at each joint, and demonstrated three-
dimensional gaits and climbing of vertical poles [40]. Ahmed 
and Billah designed a compliant backbone snake robot 
incorporating flexible tendons made from electroactive polymer 
materials [41]. 

2.2 Design Motivation 
Lessons derived from the literature highlight several main 

factors that drove the design of the Planar Bender mechanism. 
• Biological snakes display small maximum angular 

displacements between adjacent links and continuous 
curvature during lateral undulation. Groups of links can thus 
be approximated with underactuated, curving structures 

•  Snake robots are typically actuated with bulky, direct-drive 
motors. Actuating multiple links with a single motor via 
cabling allows link mass and cross sectional area to be 
reduced and avoids the problems associated with direct 
drive. 

•  Cable-driven serpentine mechanisms are often limited by the 
size of pulley actuation systems, which may be made smaller 
using antagonistic cable pairs and multi-radius pulleys. 

•  Straight routing schemes may produce nonlinearities in the 
displacement of antagonistic cable pairs. This problem can 
be avoided by routing cables along circular surfaces. 

3. MECHANICAL DESIGN 
This section describes the mechanical design of the Planar 

Bender, shown in Fig. 1, and the mechanism’s cable-routing 
scheme. 

Each bender is a modular, single-DOF unit, composed of a 
serial chain of N rigid links connected by parallel revolute 
joints. The mechanism is actuated by an antagonist-pair tendon 
transmission system, in which opposing cables coordinate their 
contraction and elongation phases to avoid interfering with each 
other’s motion. The N–1 cable pairs are routed along the 
circular exteriors of the links in circular grooves, which prevent 
lateral slippage and cable interference. Routing cables along 
circular paths rather than routing in straight lines from link to 
link constrains the cable displacements on opposite sides of the 
mechanism to be equal and opposite in value, as will be further 

discussed in Section 4. Each cable pair attaches to a single link 
and terminates on a multi-radius pulley, located in the actuation 
unit. Rotating the pulley displaces each cable segment, inducing 
a curvature profile in the mechanism that depends on the ratios 
of the pulley radii. The cable pair that connects to the nth link is 
routed along all of the n–1 intermediate links, resulting in 
kinematic coupling, since the cable displacement that occurs at 
the nth link is influenced by the rotation of those between it and 
the base. The pulley is driven with a high-torque servomotor, 
which is inserted into the base compartment via a detachable 
side-wall, to ensure proper alignment of the pulley channels 
with the exterior cable grooves. Given the pulley radii, a single 
rotary encoder on the servomotor shaft is sufficient to determine 
the full bending profile of the mechanism. Each of the driven 
links is hollow and low mass, providing extra space for 
electronics and on-board batteries. 

Cable tensioning, which is necessary to prevent backlash 
and hysteresis-nonlinearities, and ensure that the mechanism is 
in a straight configuration at equilibrium, is accomplished using 
a sliding tensioning unit, which inserts into slots in laterally 
placed bars on the side of each link. Tightening screws on a 
tensioning unit forces it further into its slot, increasing the 
tension on the wires that pass underneath. These units also 
prevent cables from slipping normal to the link surfaces. 
Tensioning must be performed sequentially, starting with the 
link closest to the base, in order to ensure that the kinematic 
constraints consistent with a straight configuration are satisfied 
at each step. 

Compliance is of particular importance in the context of a 
reduced-DOF snake, as it allows the robot to automatically 
conform and rebound from obstacles in the absence of 
individually actuated joints. Elastic elements also perform the 
vital task of filtering the high-frequency disturbances that arise 
during locomotion, which decreases the shock impulses 
experienced by the motor. Compliance in the Planar Bender is 
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FIG. 1. DESIGN OF THE PLANAR BENDER 
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achieved with extension springs attached in series with each of 
the cables, removing the need for a specially designed torsional 
element, which would increase the size of the base 
compartment. Cable lengths at the home configuration are 
selected to produce a small extension in each of the springs, 
such that all of the springs remain in tension throughout 
bending. 

The anisotropic friction characteristics necessary for 
locomotion are produced using a bristle-covered fabric whose 
friction characteristic depend on the orientation of the bristles 
relative to the ground plane. This friction-skin material 
produces different coefficients of friction in its lateral and 
transverse orientations, defined relative to the alignment of the 
bristles, and has already been characterized by the authors in the 
context of inchworm locomotion [26]. The small-scale structure 
of the friction skin is well suited to producing anisotropic 
friction on regular and even terrain, such as carpeted or tiled 
surfaces. During planar movement, the rigid structure of the 
bender ensures that every part of the friction skin is on a level 
plane and remains uniformly engaged. The skin has the property 
that the coefficient of friction that opposes forward motion is 
lower than the corresponding coefficients for both backward 
and lateral motion. The combination of these two properties is 
ideal for producing forward locomotion, as it both supports the 
serpentine gait and prevents back-slipping. 

The Planar Bender is designed to be a self-contained 
experimental platform for investigating a variety of modes of 
snake locomotion. To that end, each module includes a male-
female interface as a simple means of connecting modules in 
series, while the curvature profile of the mechanism may be 
modified at any time by replacing the pulley. Connecting 
multiple Planar Benders in series produces a “Planar Slitherer,” 
displayed in Figure 2, two modules being the minimum required 
for serpentine locomotion and turning. Modifying the curvature 
of each Planar Bender sinusoidally and out of phase with the 
adjacent module produces forward locomotion. Turning may be 
achieved by oscillating the benders asymmetrically, such that 

the maximum angular displacements on the left and right sides 
are unequal, resulting in a moment which rotates the snake. The 
ability of each module to independently execute a full bending 
motion allows for the addition of components with other 
functions, without the loss of slithering functionality. Modules 
that enable additional degrees of freedom, such as inchworm-
like linear progression or rotation about the snake’s principal 
axis, may be linked in series with bending modules to enable 
both planar slithering and three-dimensional motion, as shown 
in Fig. 2. 

4. ANALYSIS 
This section presents kinematic and dynamic analyses of 

the Planar Bender in Sec. 4.1 and 4.2, calculations of cable 
displacements in antagonistic cabling systems with straight wire 
routing in Sec. 4.3, a discussion of circular wiring schemes in 
Sec. 4.4, and calculations pertaining to three-dimensional 
motion in Sec. 4.5. 

4.1 Kinematics 
The curvature profile of an N-link Planar Bender is defined 

by its N–1 relative joint angles θi, each of which may be written 
in terms of the angular displacement θP of the multi-radius 
pulley. A simplified, two-link schematic is shown in Fig. 3, 
where cables are drawn as straight lines for the sake of 
simplicity. Here, ri is the radius of the ith pulley section, li is the 
radius of link i, hi denotes the normal distance between adjacent 
revolute joints, and Di is the distance between the ith joint and 
the point where the cables make contact on the end of the ith 
link. In the Planar Bender li, hi, and Di are taken as constant for 
all i. 

To determine the first relative joint angle θ1, note that a 
given pulley rotation θP causes a displacement of r1θP in the 
cable segment attached to the first link, which must equal the 
arc length subtended by θ1. The angular displacement of the 
first link corresponding to a pulley rotation of θP is thus      
θ1 = (r1/D1)θP. 
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FIG. 2. SNAKE ROBOT DESIGN 
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Subsequent joint angles may be calculated recursively by 
computing the rotation of link i relative to the pulley frame and 
then subtracting off the contributions to this rotation that come 
from the i–1 previous links: 

 
1

1

i
i

i P j
ji

r
D

  




   (1) 

This expression may be written more compactly by applying the 
previous argument for general i: Di(θi–1+θi)/(Di–1θi–1) = ri /ri–1, 
which implies that for i > 1, 

 1

1

i i
i P

i i

r r
D D

 



 
  
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 (2) 

The bending profile of the mechanism may thus be manipulated 
by appropriate selection of the relative pulley radii
Progressive bending along the mechanism requires a monotonic 
increase in the corresponding pulley radii: r1 < r2 <… < rn , 
which limits the number of links that the mechanism can 
accommodate for a given cross sectional area. 

4.2 Dynamics 
The torques applied on each joint by the application of a 

motor torque may be calculated by examining the resulting 
cable tensions. As can be seen in Fig. 3, the tension forces 
acting on link i, in the cables above and below that link, occur 
in equal and opposite pairs. For link i, the only cable forces that 
generate a moment in joint i are the pair acting between links  
i–1 and i. The relation between motor torque and joint torque is 
thus given by a system of N equations in N unknowns: 

 
1 1

M
1

,
N N

i i i j j
i j i

Fr F l 
 
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Joint torques can be found from cable tensions by solving (3) 
recursively from the tip of the mechanism to its base. 

4.3 Straight-Line Cable Displacements 
Straight cable routing schemes, though advantageous for 

their simplicity, pose potential problems for antagonistically 
routed systems due to potential nonlinearities in the sum of the 
displacements that occur in cable pairs. The present analysis 
investigates these nonlinearities and means of offsetting them, 
with reference to the schematic displayed in Fig. 4. Here, the 
angles α and β are design parameters that define the angles at 
which the cables connect to the lower portion of the (i+1)th link 
and the upper portion of the ith link, respectively, in terms of 
the local coordinate frames of the links. 

The lengths of the straight cable sections on the left and 
ride sides of the ith link are given, respectively, by the norms 
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where Ri is the rotation matrix corresponding to the angle θi, 
and Rα and Rβ are the rotation matrices for the angles α and β, 
respectively. 

The total change in the length of the nth cable (i.e. the 
cable that originates on the nth pulley section and terminates on 
the nth link) required to accommodate a pulley rotation of θP is 
given by the sum of the segment displacements on the two 
sides: 
 , ,n L n R n     (5) 

  , ,0
1

n

L n i i n P
i
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1

n
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i
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

     

where LSi,0 and RSi,0 are the values of LSi and RSi when the 
mechanism is straight (i.e. θP = 0). 

Since cable length must remain constant, each Δn should 
equal zero for all θP. However, as equation (4) shows, Δn in a 
mechanism described by (5) is nonlinear and, in general, 
nonzero for θP ≠ 0. 

One method of compensating for cable nonlinearities is to 
place extension springs in series with the cables so that over-
extended cables can shift their attachment point to 
accommodate desired angular displacements. Nonlinearities in 
cable displacements are thus replaced by nonlinearities in cable 
tensions, due to the forces exerted by the springs. Namely, a 
torque Elastic,i = –kiliΔi is exerted on each joint, where ki is the 
spring constant of the nth extension spring. These nonlinearities 
can be approximately canceled out by adding a feedforward 
control torque. In order to compensate for the elastic torques 
occurring at each of the N–1 joints, the feedforward torque τFF 
must simultaneously satisfy the N–1 conditions: 
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1 1 1
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Thus, if the ratios of the displacement errors in the cables 
remain approximately constant, spring constants may be 
selected according to (6) so that a single control term applied at 
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the base motor approximately cancels the torques produced by 
the nonlinearities in cable displacement, at every joint. 

Figure 5(a) plots the total cable displacement in each of 
the three cables in a four-link mechanism described by (4), as 
it executes a series of sinusoidal bending motions. Here 
dimensional parameters were set to: li = 1.5hi, with li and hi 
constant for all i, r1 = 0.2hi, r2 = 1.5r1, r3 = 2r1, α = 30°, and    
β = 10°, with an input frequency of 1.5 Hz and maximum joint 
angle of 35°. Figure 5(b) plots the error Δn in the length of 
each cable as a percent of each cable’s total length at the 
mechanism’s home configuration. During this motion, Δ2/Δ1 
and Δ3/Δ1 exhibit large nonlinearities as the mechanism 
approaches a singular configuration (i.e. as {Δ1, Δ2, Δ3} 0). 

While (6) provides a means of compensating for cable 
displacement errors, it is also desirable to understand how 
these errors can be minimized or avoided by appropriate 
selection of model parameters. In particular, an understanding 
of the dependence of cable error on link geometry informs the 
process of design synthesis. For this purpose, a sensitivity 
analysis, displayed in Fig. 6, was performed on the percent 
error in cable displacement in a two-link mechanism with 
respect to h/l as the mechanism bends, with the first joint angle 
θ1 in this case increasing from 0° to 40°.  

 
Here, the design parameters α and β are taken to be zero. For 
large θ1, cable displacement error can be seen to increase 
sharply as h/l, the height to width ratio of the links, approaches 
zero. 

4.4 Circular Wiring Scheme 
While the nonlinearities that occur in straight cable routing 

schemes may be offset using the techniques described in 
Section 4.3, they may be avoided altogether by constraining the 
cables to follow circular paths. A schematic of the paths taken 
by cables around a bending mechanism with circular links is 
shown in Fig. 7. As in Section 4.3, the angle α specifies the last 
points at which the cables make contact with the lower portions 
of the links, in terms of the links’ local coordinate frames. The 
points at which the cables contact the upper portion of each 
link’s circular surface are defined for the left and right sides by 
the angles βl and βr. The design parameter η specifies the angle 
at which each link’s circular arc extends beyond the local x-axis, 
where η = 0° for a semicircle and η = 90° for a full circle. Unlike 
in Section 4.3, α and β are variable and may be determined by 
finding the line which is tangent to both circles for some θi. In 
the case of equal, circular links, (constant li) where η ≥ 0°, the 
line between α and β tracks θi and is therefore 

  

 

 

iRS

i

ih

il

l

r

Link i+1

Link i

iLS η 

α = 0

 
 

FIG. 7. CIRCULAR WIRING SCHEME 

 

(a)

(b)

 
FIG. 5. SIMULATIONS OF CABLE DISPLACEMENT: (a) CABLE 

DISPLACEMENT / LINK LENGTH, (b) PERCENT ERROR IN CABLE 
DISPLACEMENT 

 
 

FIG. 6. CABLE DISPLACEMENT ERROR FOR VARYING LINK 
GEOMETRY 

6 Copyright © 2017 ASME



 

parallel to the line between circle centers. In this case, α = 0° 
and βl = –βr, so that for θi ≤ η, LSi = RSi and the total cable length 
remains constant, that is, Δn = 0 for all n ∈ {1, 2,… , N–1}. Thus, 
the design parameter η is equal to the maximum angular 
displacement that the links can undergo before encountering 
nonlinearities in cable displacement. 

In order to avoid mechanical interference between the 
circular and straight-line portions of adjacent links, link 
geometry must satisfy the condition 

 
arcsin 2

2 2

sin sin 2
2

    for

for

h h
l l

h h
l l





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  


        

      (7) 

A design tradeoff must thus be made between minimizing the 
total length of the mechanism and maximizing the range of the 
joint angles over which Δn = 0. Nonlinearities that occur when  
θi ≥ η may be dealt with by the same means as in Section 4.3, 
since β will remain fixed at the link’s endpoint in this range. 

In the Planar Bender, we have chosen to implement the 
circular wiring scheme described above using circular grooves, 
and we have chosen η ≈ 35°. 

4.5 Three Dimensional Motions 
While The rigid structure of each Planar Bender module 

allows for rotation about the axis which runs along the length of 
its body (which we call the z-axis) without a change in bending 
due to coupling or sagging. Thus, a rolling motion of a bender 
about the z-axis by an angle Θ transforms the local coordinate 
frame by Rz,Θ, the rotation matrix about the z-axis for that angle.  
The Planar Bender is designed for both planar maneuvers and 
spatial maneuvers in conjunction with a rotational unit. 
Including a pure rolling-DOF departs from the biological 
design, and may allow for the use of gaits not found in nature. A 
gait similar to sidewinding, where bending sections are 
progressively lifted and placed down, should also be possible. 
Performing three-dimensional movements will require precise 
coordination of the bending-DOF with the rolling-DOF, making 
it necessary to understand how the dynamics of the bending 
mechanism, and particularly its moments of inertia, change as it 
bends. 

We define the y-axis as the axis perpendicular to the plane 
of bending and the z-axis as the one about which the rolling-
DOF acts (referring to Fig. 2), and we define IY,i and IZ,i as the 
moments of inertia of the ith link about these respective axes. 
Modeling the links as thin rods, the y-axis moments of inertia 
may be computed recursively as IY,i = miλi,y

2+mihi
2
/12, where  

λi,y = [Λi–1
2+ (hi/2)2–Λi–1hicos(ψi–1)]½ is the distance from the 

origin to the ith link center and Λi = [Λi–1
2+hi

2–2Λi–1hicos(ψi–1)]½ 
is the distance from the origin to the ith joint. We define the 
angle ψi = θi–αi, where αi = arcsin[(hi-1/Λi)sin(ψi–1)], and ψ1 = θ1. 
The z-axis moment of inertia may be modeled by treating each 
of the links as a solid cylinder of radius li, height hi, and mass 
Mi. Employing moment of inertia tensor transformations,    
IZ,i = ½(Iz,i+Ix,i)+½(Iz,i–Ix,i)cos(2θi), where Iz,i = ½Mili

2 is the 

moment of inertia of each cylinder about its axis and               
Ix,i = (Mi /hi)[li

2(hi–λi,z)/4+(hi–λi,z)3
/ 3] is the moment of inertia of 

each cylinder about a line normal to its surface and passing 
through its base. Here, Ix,i is given by the relation              
λi,z = Σi

k=2|hk–1sin(θk–1)|. 
The above expressions for Iy and Iz were computed 

numerically, where Mi, hi, li, and θi were taken to be constant for 
all i. Figure 8 displays the results of these calculations, 
normalized by the moments of inertia of the first link, as the 
angle of the first joint moves from –60° to 60°. 

5. SNAKE LOCOMOTION 
This section presents an overview of serpentine motion in 

snake robots that actuate every joint individually, and applies 
these principles to devise a locomotion strategy for a snake 
robot composed of underactuated bending mechanisms. 

A discrete approximation to the sinusoidal shape of a 
biological snake undergoing planar lateral undulation, for a 
snake robot with N equal, straight links is given in terms of the 
snake’s i ∈ {1, … , N–1} joint angles by the expression 

 ref, 0sin( ( 1) )i t i         (8) 

where α and ω are the amplitude and angular frequency of the 
angular displacement, respectively, δ is the phase offset 
between adjacent joints, and ϕ0 is a parameter which induces 
turning for nonzero values, assumed here to be constant [7]. 
Serpentine motion with constant α, ω, and ϕ0 (i.e. constant 
turning radius and speed) may thus be parameterized by a single 
variable, and is therefore a single degree-of-freedom motion, 
with an additional degree of freedom sufficient to parameterize 
planar turning. 

As shown by Liljebäck, et al., the δ(N) that maximizes the 
average forward velocity of a snake robot driving its joint 
angles according to (8), under the assumptions of equal link 
lengths and no side-slipping, is equal to the δ(N) that maximizes 
kδ, where 

  
1 1

1 1
sin ( ) ( )

N N

ij
i j

k a j i N 
 

 

   (9) 
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and where aij is the ijth element of the matrix           
AD∈ ℝ

( 1) ( 1)N N   , given in [7]. In the case N = 3, numerical 
solution of (9) shows that the optimal phase offset is δ = π/2, so 
that the first and last link of the three-link snake robot are 180° 
out of phase. The two halves of the snake thus take turns 
producing moments about the center of mass, so that the robot 
traces out a sinusoidal-like trajectory. The observation of this 
behavior in a 3-link snake suggests that it may be the generally 
applied strategy to maximize forward velocity, in which case a 
closed form approximation for (9) would be given by the 
expression 

 
1N


 


 (10) 

A comparison of the numerical result given by (9) and the 
closed form expression in (10) is presented in Fig. 9, for N 
between 0 and 30 links. The two expressions are in close 
agreement, with (9) undergoing a higher order oscillation about 
(10), according to the parity of N. 

By analogy with the control strategy for a 3-link snake 
robot that is actuated at each link, a snake composed of two 
Planar Benders may achieve locomotion by driving each 
module to approximate a half-period of a sinusoid, at some 
phase offset from each other. In the case of equal link lengths, 
(10) may be used to determine the optimal curvature profile of 
an N-link Planar Bender at maximum amplitude. To determine 
the optimal phase offset between m Planar Benders of n links 
each, note that each link of a bender must be driven at a phase 
difference of d = (n–1)δ with respect to the corresponding link 
in the adjacent bender. Applying (10) with N = mn–(m–1), since 
the links that connect modules have zero relative angle, gives a 
phase difference between adjacent modules of d ≈ π/m.  

In the case of unequal link lengths, due to the presence of 
the actuation module in one of the links, we can obtain desired 
maximum angular displacements by fitting the discrete snake to 
a sine wave of amplitude A. Treating each link as a point 
located at its center of mass, the problem of fitting the 
mechanism to Asin(x) reduces to a least squares fit of N points 
to the sine wave. The optimized joint angles obtained by this 

 

procedure may then be used with equation (2) to determine the 
optimized pulley radius ratios. 

Locomotion in a snake robot composed of i benders may be 
achieved by applying a control torque at each motor of 

 
1 1

M, ref, , ref, ,
1 1

N N

i P i i j D i i j
j j

k k    
 

 

   
      

   
   (11) 

where kP and kD are proportional and derivative gains, θi,j is the 
jth joint angle of the ith bender, and θref,i is given by (8).  

The controller in (11) was demonstrated in a dynamic 
simulation of serpentine locomotion and turning in a two-
bender snake robot. Each bending mechanism was represented 
as a serial chain of straight links connected by revolute joints 
and obeying the kinematic constraints specified by (2), with 
exterior frictional forces taken to be viscous. The sums of the 
joint angles in the two benders and corresponding motor 
torques are displayed in Fig. 10, for 70 seconds of snake 
locomotion. In the simulation in Fig. 10, the snake robot has a 
total mass of 1.4 kg, pulley radii of r1 = 6 cm, r2 = 11 cm, and  
r3 = 16 cm, li = 35 cm for all links, and frictional coefficients of 
ct = 0 and cl = 1 in the transverse and lateral directions, 
respectively. The control parameters are set at α = 1 rad, ω = 2 
Hz, and d = 1.5 rad, with a maximum motor torque of 0.1 Nm. 
The snake is made to travel in a straight line between t = 0 s and 
t = 10 s, turn 135° clockwise between t = 10 s and t = 30 s, 

(a)

(b)

 

FIG. 10. SIMULATION OF SNAKE LOCOMOTION: (a) SUM OF 
JOINT ANGULAR DISPLACEMENTS, (b) MOTOR TORQUES 

 
 

FIG. 9. OPTIMAL PHASE OFFSET VS NO. OF LINKS 
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turn 90° counterclockwise between t = 30 s and t = 50 s, and 
then resume straight travel between t = 50 s and t = 70 s. The 
intervals of turning may be identified in Fig. 10 as those periods 
of time during which the angle sums integrate to nonzero 
values. During its 70 s of travel, the snake robot moved a total 
distance of approximately 9.3 m. The maximum steady velocity 
in simulation occurred at d ≈ 0.7 rad, about 45% lower than the 
prediction given by Eq. (10). This discrepancy is likely due to 
the presence of side-slipping and details of link geometry. 

6. CONCLUSION 
This paper presented the design and analysis of a cable-

actuated, single-DOF bending mechanism, for use in robotic 
snakes. Cables were routed in agonist-antagonist pairs and 
actuated by a multi-radius pulley, in order to minimize the 
robot’s mass and cross-sectional area. Nonlinearities in cable 
displacement were avoided by routing the cables along the 
exterior of circular links. Relative pulley radii determined the 
curvature profile of the mechanism, which was made to 
approximate a sinusoidal shape ideal for planar serpentine 
locomotion. One disadvantage of a circular cabling scheme that 
should be addressed in future work is that large cable lengths 
must make contact with link surfaces, increasing frictional 
losses in transmission efficiency. Minimizing frictional losses in 
designs of this type is a goal of future study. 

Future work will involve further development of a dynamic 
model to refine design parameters and test control strategies for 
snake locomotion. Dynamic modeling will be used to compare 
serpentine locomotion in snakes that employ reduced-DOF 
elements to that of snakes that independently actuate every joint 
angle. Experimentation with a finalized prototype will then be 
performed to validate simulated results and refine the controller. 
The use of modules designed to allow translational and 
rotational motion will also be further explored, along with their 
use in three-dimensional gaits. 
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