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ABSTRACT 
This paper presents the development of a wireless 

instrumentation system for estimation of air turbulence patterns 
in real-time. The proposed system uses off-the-shelf RC 
helicopter flying in wind turbulent regions and uses the 
oscillations caused by wind gusts to measure turbulence. This 
paper presents the proposed system as a tool to measure off-
board ship air wake patterns generated by a cruising naval 
patrol craft. Two aviation grade Inertial Navigation Systems 
(INS) with onboard filters are used in this system. These filters 
precisely measure the dynamics and the location of the 
helicopter with respect to the vessel. The data is then wirelessly 
transmitted to a base station on the vessel where Back 
Propagation neural networks are used to remove the effects of 
pilot inputs from vibrational data in real time to extract the 
oscillations caused by the turbulence alone. The system was 
tested in Chesapeake Bay in a wide range of wind conditions 
and the results are shown as air wake intensity patterns plotted 
on helicopter trajectory around the cruising vessel. The 
proposed system will be used for experimental validation of 
CFD models to predict ship air wakes. 

NOMENCLATURE 
INS    =   Inertial Navigation System 
IMU =   Inertial Measurement Unit 
ω      =   Angular rate vector (rad/s) 
PWM  =   Pulse Width Modulation (μs) 
RC  =   Radio Controlled 
θ  =   Attitude vector (deg) 
V  =   Velocity Vector (m/s) 
M  =   Mass of helicopter (kg) 
g  =   Acceleration due to Gravity (m/s2) 
BPNN =   Back Propagation Neural Network 
CFD =   Computational Fluid Dynamics 
VTOL =   Vertical Take-Off and Landing 

 
I INTRODUCTION 

Launch and recovery of VTOL aircrafts like helicopters 
from cruising naval vessels is a challenging and potentially 
hazardous task [1]. It is mainly because of three main reasons:  

(1) Interaction of ship air wakes with the aircraft leads to 
undesirable motion in the helicopter;  

(2) As the helicopter approaches the landing deck the 
downwash of the helicopter leads to an effect called ground 
effect which significantly changes the helicopter control 
dynamics;  

(3) There is limited area on the flight deck to operate the 
helicopter.  
Thus, to minimize these risks, it is important to have a 

system capable of experimentally estimating ship air wakes and 
its impact on the aircraft in real-time. The existing CFD models 
are not mature enough [2-8], and there is a need of actual air 
wake measurements for validation [9,11]. 

In this paper, we present a wireless telemetry system 
capable of predicting air wake patterns by measuring the impact 
of air wake on the helicopter. The presented system is a 
technological successor to a system which has been published 
before [11-13]. Most of the existing systems use anemometer 
arrays to measure air wake patterns. But these systems have 
several limitations: (1) they cannot be deployed off of the flight 
deck; (2) they are very expensive and bulky to handle. To 
overcome these limitations, the proposed system indirectly 
estimates the ship air wake patterns by wirelessly measuring the 
air wake’s impact on an inexpensive off the shelf RC helicopter 
[10]. 

 The predecessor of the proposed system [11-13] had a 
limitation. It was dependent on the history of pilot inputs to 
estimate the components of pilot input in the helicopter’s 
dynamics as the attitude information was not in the system. In 
this paper, the system presented tackles the above issue by 
employing INS, which delivers attitude and accurate position.  
 
II PROPOSED SYSTEM 
 The central idea behind the proposed system is that a flying 
helicopter experiences undesired oscillations in wind 
turbulence. These oscillations are captured to generate 
turbulence patterns [10,12,13]. Air wake is turbulence, which 
originates from pressure gradients created by moving objects 
and further results in violent wind gusts. During flight in an air 
wake zone, the helicopter experiences differential airflow 
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velocities that cause tilting of the aircraft. Thus it can be 
inferred that monitoring angular velocity patterns of a 
helicopter provides a good description of air wake patterns. Fig. 
1 shows tilting of an RC helicopter with angular velocity ω as a 
result of differential wind velocity (V1>V2). 
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Figure 1. Interaction of air wake with helicopter 

The proposed telemetry system works as a two unit system. The 
first unit is called as rover module and is retrofitted on an RC 
helicopter. The second unit is called as base module and is 
fitted on the ship under study. Both battery powered telemetry 
modules are equipped with aviation grade VN200 INS and 
wirelessly communicate with each other over a Wi-Fi network. 
Fig 2 shows the telemetry system setup.  
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Figure 2. Telemetry System Setup 

A small light weight RC helicopter with rotor diameter of 
4.5ft is used to mount the rover module as it responses well to 
external wind disturbances. The RC instrumented helicopter is 
flown in the aft of a modified YP676 patrol craft in serpentine-
like trajectory to estimate air wake patterns.  

 
A. Rover Module 

The Rover module uses an ARM Cortex M4 
microcontroller as its central control unit. It acquires raw IMU 
data packet at 40Hz, INS solution at 40Hz and Raw GPS at 8 
Hz from VN200 development overboard over SPI (Serial 
Peripheral Interface) link and sends the data at 40Hz to the base 
module. The previous versions [11-13] of telemetry system 
used GPS for position estimates which provide position 
estimates at 5Hz. The INS board used in the current system not 
only provides better helicopter position, but also gives accurate 
attitude and heading estimates. The use of attitude information 
in pilot input compensation is explained in later sections. With 
high speed Wi-Fi router and high gain antenna, the rover 
module is capable of transmitting data from one mile line of 
sight at a data rate of 72 Mbps. The XBee RF data link used in 
previous versions was limited to 250 Kbps. Replacement of RF 
link to Wi-Fi has made the proposed telemetry system useful in 

applications like rotor dynamics analysis where high speed data 
acquisition is needed. Fig. 3 shows rover module mounted on 
RC helicopter approaching YP676 during an underway flight. 

 

 
Figure 3. Rover module mounted on helicopter approaching 

flight deck of Modified YP676 vessel 
 

B. Base Module 
The base module receives pilot inputs and data from the 

rover module. Similar to the rover module, the base module has 
been upgraded with Wi-Fi and INS.  Unlike the rover module, 
the ARM cortex M4 microcontroller in base module is used to 
read pilot input signals whereas, a USB to quad UART hub acts 
as central unit of the module. The hub connects up to 4 serial 
devices to a computer via USB port. The microcontroller reads 
PWM inputs from a RC receiver connected to the base module 
and sends the pilot inputs to the PC via serial port of the hub. 
The other serial ports are used to interface XBee Wi-Fi and 
VN200 INS module to the system. The fourth serial port is left 
unused for future upgrades to interface other sensors with the 
system. 

 

 
C. Air wake pattern extraction 

In addition to air wakes, major components of tilting and 
oscillations are caused by pilot inputs in the process of 
controlling the helicopter. The proposed system uses back 
propagation neural network to estimate and compensate for 
dynamics arising from pilot inputs in order to extract the 
impact of air wakes on the helicopter. The relative position of 
the helicopter was obtained from position and attitude 
estimates from the VN200 INS mounted on the rover and base 
modules. The YP676 patrol craft is equipped with anemometer 
array to help the craft master maintain constant relative wind 
conditions. Fig. 4 shows the schematics of the proposed 
system and the steps involved in air wake pattern estimation. 
The dotted lines represent the wireless communication 
whereas the solid lines represent wired communication. 
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 Figure 4. Schematics of proposed Telemetry System 
 
 

III PILOT INTPUT COMPENSATION 
As mentioned before, the vibration data collected on the 

helicopter contains a pilot induced component which needs to 
be removed. In a simplified rigid body model of the helicopter 
[14], its motion is governed by tilting of the main rotor’s plane. 
For example, the longitudinal cyclic pitch control applies 
differential thrust on the rotor plane to tilt for forward 
movement (Fig. 5).The helicopter experiences a pendulum like 
counter torque when tilted forward as the point of rotation 
(which is the center of the rotor plane) is higher than the center 
of mass. Also, high velocity of the air around the fuselage 
makes the helicopter to maneuver in terminal velocity region 
for most of the time. This makes angular velocity of helicopter 
a nonlinear function of cyclic pitch input (pilot input) and 
attitude of helicopter. In an ideal case, the angular rate 
measurements can be considered as a vector sum of two 
components, one arising from external air turbulence and the 
other from the helicopter’s own motion. Since, helicopter 
consists of discrete moving parts, it generates a lot of high 
frequency vibrational noise, which needs to be removed from 
the final results. 
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Figure 5. Effect of pilot inputs and attitude on angular rates data 
 

Although any nonlinear machine learning technique will 
suffice, we choose back propagation neural networks (BPNN) 
to compensate for pilot inputs because it is easy to implement 
and at the same time very reliable tool for nonlinear regression. 
Briefly stated, Neural Network is an inter-connected network 
composed of neurons, where each neuron is regarded as a 
multi-input and single output system [15-18]. Each neuron 
calculates weighted sum of all the inputs, subtracts a 
characteristic value (bias) from the sum and then applies a 
characteristic function to obtain the output of the neuron. The 
capacity of a neural network to modal complex data largely 
depends on the network topology and the characteristic 
functions associated with each neuron. Thus training of neural 
network consists of finding the optimal set of weights and 
biases. 

 
Mathematically the output of a neuron is calculated as follows: 
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Here ݂ is the characteristic function, ݓ௜ is weight 
corresponding to ith input (ݔ௜), ܾ is characteristic bias and ܰ is 
number of inputs to a neuron. 

  Complex networks with large number of neuron layers 
can model fine variation in training data but increases the risk 
of overtraining and loss of generalization. Unfortunately, no 
analytical method exists to determine optimal network topology 
and one needs to rely on ‘trial and error’ methods based on the 
nature of training data for determining the optimum topology of 
a neural network. 

BPNN is a multilayer feed-forward network and uses error 
back propagation algorithm for training [15-20]. The neural 
network was trained to predict the 3axis angular rates of 
helicopter components resulting from pilot inputs obtained 
from the receiver module. The helicopter was flown in closed 
aircraft hangar (Davison Air Field), free of external air 
disturbances to collect the data for training of the Neural 
Network.  Thus the recorded angular rate data contains only 
pilot input components and noise caused by helicopter’s 
motion. Four indoor flights were conducted with T-REX 600E 
Pro helicopter to collect training data. During these training 
flights, a variety of helicopter maneuvers were performed. A 
versatile dataset of pilot inputs along with helicopter attitude 
with angular rates was created. During flight the helicopter was 
flown significantly higher than the floor to prevent disturbances 
due to ground effect [21]. Approximately, 75000 data samples 
were collected during these indoor training flights and 10% of 
the total data was used for training the networks. The remaining 
90% was used for testing the performance of the networks. 

 
A. BPNN Training 

In previous version of the telemetry system [11-13], due to 
absence of attitude information, pilot input history was used to 
model pilot inputs. This not only increased the dimensionality 
of the input vector (which was 15 in the previous system) but 
also made network response dependent on the length of the 



 4 Copyright © 2015 by ASME 

pilot input history considered. Addition of attitude information 
(acquired from INS) to input vectors fixes these problems as it 
directly includes the helicopter’s state estimates in the model. 
The proposed system uses two (hidden) layered BPNN to 
estimate the pilot input component in each of the three 
Cartesian components of angular rates.  The number of nodes in 
input and output layer of BPNN are determined by the 
dimensionality of the input vector and the output vector 
respectively. We used six dimensional input vector comprising 
of 3 PWM inputs for swash plate, 1 PWM input for tail rotor, 
pitch angle and roll angle. Each BPNN has 1 dimensional 
output vector which is a Cartesian component of helicopter’s 
angular rate.  

Both input and output vectors are normalized to zero mean 
and unit standard deviation. It helps in assigning uniform 
weights to input vectors which leads to better prediction 
accuracy. These normalization parameters are stored to 
normalize the input vectors and to rescale the output to the 
original scale during the testing phase. 
The number of neurons in the hidden layers were assigned by 
trial and error method. The number of neurons in the hidden 
layers were varied from 3 to 15 and all combinations were 
tried. During the training of a BPNN, local minima of error in 
parameter space was estimated and all the weight and 
parameter were initialized with random value. Thus, it is 
possible that the trained network may not be the best network. 
Therefore, each network topology was trained 15 times with 
random initial weights to overcome the above issue. MATLAB 
implementation of efficient Levenberg–Marquardt algorithm 
[19-20] was used for error back propagation training. The 
“tansig” and “purelin” were used as activation functions for the 
hidden layers and the output layer respectively. Ten-fold cross 
validation method [22-23] was used to prevent overtraining of 
the networks.  
  

The topology delivering the best prediction accuracy on test 
data was finally selected for air wake patter estimation. The 
final topologies of the three trained neural networks are given 
in Table 1. 
 

Table 1. Topologies of the three trained neural networks 

 
B. BPNN Performance and Analysis 

As mentioned earlier, in addition to pilot input’s 
component, the measured data also includes noise generated by 
the helicopter itself. Random sensor noise emanating from the 
gyroscope can be neglected for being very small in comparison 
to the measured values. The source of helicopter’s noise is its 
rotor motion which rotates at a constant speed.  The noise is 
highly periodic in nature and can be removed by frequency 
domain filtering. During each training flight the helicopter was 
kept hovering for some time with minimum pilot inputs for the 
above purpose. This provided a dataset with helicopter noise 
only. The data was then treated with different types of Gaussian 
low pass filters until the noise was removed. It was 
experimentally determined that a Gaussian low pass filter with 
a cutoff frequency of 11Hz gave acceptable results. The low 
pass filter was not applied before training as it would have 
affected the performance of the BPNNs. Fig. 6 shows 
prediction results of BPNNs for angular rates along X, Y and Z 
axis respectively, overlaid on corresponding actual 
measurement and low pass filtered data.  

 

Neural 
Network 

Input 
Layer 

Hidden 
Layer 1 

Hidden 
layer 2 

Output 
layer 

Net1 (X axis) 6 5  3 1

Net2 (Y axis) 6 6  3 1

Net3 (Z axis) 6 4  4 1

Figure 6.  Neural network test results on one of the test data of one of the indoor test flight 
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Figure 9.  Coordinate system of the ship 

 
Since air wake is the source of oscillations in the helicopter, the 
air wake intensity pattern is the same as the angular rates 
intensity after removal of pilot inputs and helicopter’s 
vibration. If ൛߱௫, ߱௬, ߱௭ൟ is the low pass filtered angular rate 
vector (࣓ࢌ) of the helicopter and	൛߱௫ᇱ, ߱௬ᇱ, ߱௭ᇱൟ is the angular 
rate vector (࣓ࢌ

ᇱ) predicted by the network, then the magnitude 
of the net angular rate (߱௥) is obtained as follows:  

 
.'

ff ωω r                          (3) 

 
The magnitude of the angular rate is then plotted on the 

helicopter’s trajectory to obtain ship air wake intensity patterns. 
Fig. 10 shows ship air wake intensity pattern for one of the 
outdoor test flights.  

 

Figure 10. Isometric view of the ship air wake intensity plotted 
on the helicopter’s trajectory. 

 
IV CONCLUSION AND FUTURE WORK 

This paper presented a new system capable of estimating 
external disturbances on a helicopter as a measure of ship air 
wakes. The proposed system provides a relatively low cost 
solution for problem involving mapping of wind turbulence by 
making use of off-the-shelf RC helicopter. Significant 
improvement has been made both in terms of hardware and 

software in the presented system as compared to previous 
versions, which not only improves the system’s prediction 
accuracy but also makes the system useful for other 
applications.  Currently, this system estimates only the 
rotational component of air wakes. Future work includes use of 
a more precise positioning system to estimate translational 
effect of air wakes. Bayesian regression methods will be 
implemented to model data and noise separately for better 
prediction accuracy. Furthermore, this work will be extended to 
develop an autonomous flight control system capable of 
rejecting external disturbances. 
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