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ABSTRACT 

Navigation of mobile robots in environments with irregular 
terrain is a challenging task for scientists and engineers because 
it involves 3D environment recognition and high order 
dynamics of the mobile robotic systems. One way to solve this 
problem is to use hybrid locomotion mechanisms. In this paper, 
we aim to establish a novel frame work for hybrid local planner 
which combines motion primitives with artificial neural 
networks for navigation in rough terrain. This artificial neural 
network decision engine will find the optimal modes of 
locomotion for the Hybrid Mechanism Mobile Robot. The input 
to the neural network is the measurements of the obstruction 
and the output is the configurations suitable for surmounting an 
obstacle. Once the robot discovers a change in the terrain (such 
as high step, low step, etc.), number of measurements will be 
taken using a feature extraction method to decide the 
locomotion mode suitable for a particular terrain. Several 
measurements of the obstruction are considered, such as height, 
area, and depth of each surface in the scene. These are 
computed from the 3D representation of the environment built 
using the on-board sensors, stereo cameras, and a 3D laser 
range finder. These measurements are fed into a 
backpropagation neural network in order to choose the 
successful candidate robot configuration.  
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1. INTRODUCTION 

 
  Since Shakey, the first robot to navigate autonomously [1], 
robots have started sharing the same workspace with humans. 

Clearly, it is very inefficient to restrict the locomotion of 
mobile robots to regular wheeled locomotion and 
consequentially restrict their workspace to indoor 
environments. However, many problems are involved in rough-
terrain navigation such as 3D environment recognition and 
sometimes motion planning of complex systems with multi-
mode locomotion.   

A possible approach to reduce the computational 
complexity of the motion planning in rough terrains is based on 
restricting the possible trajectories of the robot to a family of 
curves/straight lines that can be obtained from the 
interconnection of appropriately defined primitives [2].  

Motion primitives and other types of maneuvers have been 
applied widely to robotics and digital animation. Number of 
general strategies has been used: 
a) Record and playback: This strategy restricts motion to a 
library of maneuvers. For example, humanoid locomotion can 
be planned as a sequence of pre-computed steps [3]. Robust 
helicopter flight can be planned as a sequence of feed-forward 
control strategies to move between trim states [4-5]. The 
motion of peg-climbing robots can be planned as a sequence of 
actions like “grab the nearest peg” [7]. 
b) Model reduction: This strategy plans overall motion. For 
example, another way to generate natural-looking humanoid 
locomotion is to approximate the robot as a cylinder, plan a 2D 
collision-free path of this cylinder, and follow this path with a 
fixed gait [8]. A similar method is used to plan the motion of 
nonholonomic wheeled vehicles [9].  
c) Bias inverse kinematic solutions: Like model reduction, this 
strategy first plans the motion of key points on a robot or digital 
actor, such as the location of hands or feet or center of gravity. 
But instead of a fixed controller, a search algorithm is used to 
compute a pose of the robot at each instant that tracks these 
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points (an inverse kinematic solution). One approach is to 
choose an inverse kinematic solution according to a probability 
density function learned from high-quality example motions 
[10, 11].  

Recently, motion-primitive-based algorithms have been 
successfully used in robotic navigation.  Hwangbo et al. [12] 
have used motion primitives for local motion planning of a 
single wing UAV. Goldberg et al. [13] have proposed the so 
called GESTALT navigation algorithm. GESTALT is a set of 
routines that find the next best direction for a robot to move, 
given the state of the world already seen, updated sensor data, 
and a desired waypoint goal. Pivtoraiko et al. [14] proposed a 
new set of motion primitives which relaxed the condition that 
all motion primitives are placed on constant curvature arcs. 
They have shown that by using motion primitives with various 
curvatures rather than constant curvature will improve the 
performance of the dual global and local navigation system.  

For many robotic platforms, such as indoor mobile 
navigation or UAV’s, the choice of the “best” motion primitive 
is mostly determined by number of factors such as minimum 
distance [12], least time, or least energy.  For a free-climbing 
robot, such as the robot considered in this paper, many 
constraints play equally important role. These are static 
equilibrium, closed-chain kinematics, collision-avoidance, and 
torque limits; all of which affect the choice of the winning 
motion primitive differently at each set of motions to be 
performed [15].  

In this paper, we propose a frame work for hybrid local 
planner which combines motion primitives with artificial neural 
networks for navigation in rough terrain. 

The application of artificial intelligence techniques such as 
neural networks in the decision making of the robot has been 
successfully done in a wide variety of robotic platforms. 
Antsaklis [16] suggested that the use of Artificial Neural 
Networks (ANN) in control systems is a natural evolutionary 
step to meet new challenges because they have the potential for 
very complicated system. Since then, the ANNs have been used 
in many aspects of control systems. Robotics motion planning 
is one of the challenging problems especially for robots with 
large number of degrees of freedom and eventually higher 
dimensional configuration space.  

Recently, a number of researchers have applied ANN’s in 
robot navigation. Harb et al. [17] have used an ANN to perform 
object recognition and robot navigation. They were able to 
recognize environments such as corridors, intersections, corners 
etc. However, it is not clear how the planning part of their 
algorithm navigates the robot.  

Gao and Han [18] have used neural networks to solve the 
problem of obstacle avoidance and navigation for an indoor 
unmanned aerial vehicle based on image data.  Pettersson et al. 
[19] have used neural networks for execution monitoring 
purposes. They were able to identify model-free failure 
prediction. Also, Hou et al. [20] have proposed neural network 
schemes for information processing, localization and navigation 
of mobile robots. In their approach, they have used the neural 
network to solve the optimization problem for path planning. 

The path planning algorithm is based on the minimization of 
the distance to an obstacle.  

The proposed algorithm will use motion primitives to plan 
the steps for the robot climbing. Moreover, Backpropagation 
Neural Network (BNN) will be used to choose the winning 
motion primitive. 
 
2. HYBRID MECHANISM MOBILE ROBOT 

 
 Without a loss of generality, the proposed algorithm will be 
applied to the Hybrid Mechanism Mobile Robot (HMMR) 
shown Figure 1.  The HMMR is a multi-configuration mobile 
robot, which has the ability to utilize its manipulator arm to 
climb obstacles as well as for manipulation purposes [21–24]. 
Furthermore, each link has the ability to be folded inside the 
previous link so as to change the number of degrees of freedom 
depending on the required locomotion mode.  Consequently, 
the HMMR can generate several modes of locomotion 
contingent on whether it fully or partially deploys its 
manipulator arm. This special property allows it to overcome 
regular terrains/obstacles (such as stairs, ditches, and steps) and 
irregular terrains (such as a rubble pile). The full geometrical 
symmetry of the HMMR provides it with the ability to deploy 
its links from both sides of the platform, which means that the 
robot will have the same functionality even if it were to flip 
over.  

Overall, the HMMR incorporates two tracked platforms 
actuated independently and provide traction to the robot. A 
central manipulator arm with two links and two degrees of 
freedom (DOF) is cascaded in between the tracks. The 
actuation of these DOF’s is performed separately via motors 
located under the tracks.  

 
 

 
Figure 1: CAD drawing of the HMMR 

 
In addition to the gripper, the third link in the HMMR 

accommodates a servo-actuated mechanism that carries a Pitch-
Actuated Laser Range Finder (PALRF) and a stereo vision 
system. A single board computer is also housed inside the link. 
This connects directly to the camera and Lidar in order to 
process images and synthesize actions accordingly. This robot 
is currently in the manufacturing process. The detailed 

Pitch Actuated Laser 
Range Finder 
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description of the HMMR is not in the scope of this paper, but 
interested readers can find more information in references [21–
24]. In this paper, we are interested in presenting the 
autonomous decision making process of the robot supported by 
simulations. 

 
3. THE GENERAL FRAME OF LOCAL PLANNING  
 

The dual planning in autonomous navigation is a widely 
adopted practice in robotics. Most mobile robot navigation 
techniques are developed at two levels: the local level and the 
global level. The global planner is assigned the mission of 
finding the optimal path plan based on the limited prior 
knowledge of the environment. However, the local planner 
deals with navigation on the scale of a few meters, where the 
main problem is obstacle avoidance. The local navigation is 
mainly useful for rapid responses to avoid collisions.  
Moreover, the local planner can be of special use for robots 
which have the ability to surmount an obstruction if needed, 
like the HMMR. In this case, once the sensors detect an 
obstruction, the robot should be able to classify this object into 
classes based on the features of the obstruction. In the HMMR, 
these features are extracted using the 3D laser range finder. The 
classification process will not only classify the obstruction into 
surmountable or non-surmountable obstacles; it should also 
determine the type of surmounting process that the robot will 
use. For a reconfigurable robot such as the HMMR, it uses 
different configurations for different situations. In this paper, 
these configurations are limited to four types of obstructions:  
Small step, High step, Stair, Wall. These configurations are just 
examples to test the classifications process; however it is not 
limited to the above mentioned four cases.   In Figure 2, the 
flow chart of the proposed local planning algorithm is 
presented. The algorithm starts with following the global plan. 
This can be computed using any suitable navigation function 
such as artificial potential field, Probabilistic Road-Maps, or 
Rapidly-exploring Random Trees RRTs, etc. In this paper, the 
harmonic artificial potential field is adopted. The harmonic 
potential field has no local minima. It performs very well as a 
global planner. However, it has been shown [25] that the 
harmonic potential field performs poorly for local planning. In 
this paper, this drawback is compensated by using the proposed 
local planner. 

The local planner starts once the robot discovers an 
obstruction using a stereo vision system.  Immediately 
thereafter, the robot will start scanning the environment using 
Pitch Actuated Laser Range Finder and a 3D cloud (X,Y,Z) 
representation of the environment will be acquired. This is 
elaborated upon in the following section. The next step is to 
divide the 3D cloud into a number of motion primitives in 
different directions. The motion primitives are shown in Figure 
3, where a number of rays are illustrated. Every ray represents a 
possible direction for a candidate motion primitive. The next 
step is to compute metrics of these candidates such as height 
and width and degree of difficulty. These will be fed into a 
neural network which will label each with a degree of 

difficulty. For now, we adopted the following levels of 
difficulty: Wall = 4, stair = 3, high step = 2, low step = 1, flat 
ground, = 0. The next step will be to find the candidate motion 
primitives with the lowest difficulty score. If one is found with 
score 0 then follow it. If none is found then update the number 
of motion primitives. If multiple are found then check which 
has the lowest potential field values.  
 
 

 
Figure 2: Flow chart represents the general frame of the local 

planning algorithm 
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Motion primitives 

HMMR

Obstacles

 
Figure 3: Motion primitives for the HMMR 

 
 

4. FEATURE EXTRACTION 
 
In Figure 4, the Pitch Actuated Laser Range Finder 

(PALRF) is shown. Every point in the point cloud data of the 
PALRF can be represented in terms of three variables (ρ, ψ, θ), 
where ρ is the distance from the LRF to the position of the 
point of interest, θ is the pitch angle, and ψ is the yaw angle. 
For every pitch angle θi, the values of the 2D polar variables (ρ, 
ψ) readings of the LRF are projected into a local coordinate 
system (x,y,z). The origin of this coordinate system is located at 
the center of the scanning level of the LRF. After moving in the 
pitch direction, all points in the space will be projected into one 
global coordinate system. We have chosen the global 
coordinates system (X,Y,Z) to be located at the center of 
rotation, as shown in Figure 4. The homogenous transformation 
will transfer any point P = [Pρ, Pψ, Pθ]

T represented using the 
variables (ρi, ψi, θi),  into the global coordinates (PX, PY, PZ).  
This transformation is described in the following equation: 
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where d is the length of the rotating arm. Eq. (1) maps every 
point in the point cloud into a point in the global coordinate 
system.   



 
Figure 4: Pitch Actuated Laser Range Finder 

 
  An example of a 3D image generated by the PALRF is 

shown in Figure 6. Figure 5 shows a 2D image of stairs taken 
by a digital camera. These stairs were scanned using the 
PALRF system shown in Figure 4. All the scanned data was 
projected on one frame using Equation 2. Figure 6 shows a 3D 
image of the stair using PALRF. A segmentation process has 
been applied on the 3D image to segment each surface in order 
to extract useful information from the 3D image. This 
information may be the height of each step, distance to each 
step, width of each step, etc. This is shown in Figure 7.  

For example, the actual height of each step was 28 cm 
while the measured height of the steps with the PALRF was 
around 31 cm. It should be noted here that since the laser 
scanner measures distance to objects and not heights, the 
process of projecting these distances into their respective 
surfaces and subtracting them to get the heights could introduce 
error. This error may be attributed to two possible factors: the 
first is the accuracy of finding the edge of the step, and the 
second may be attributed to hardware limitations of the laser 
scanner in terms of finding the accurate distance.  

 

 
 

Figure 5: Scanning environment of the PALRF 
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Figure 6: 3D image of the PALRF 

 
Figure 7: A segmentation of the 3D image into surfaces 

 
 
5. BACKPROPAGATION NEURAL NETWORK  

 
In this section, the neural network is briefly described. 

After segmenting the environment, the neural network will 
input slices of the 3D Lidar image in order to make a decision 
on what motion primitive the robot should consider, as 
explained in Figure 2.   

We assume that each input event vector X has a dimension 
of m and each output event vector has a dimension of n (see 
Figure 7). We also assume that the network has N+n trainable 
neurons. N can take any value, where N ≥ m.  

The backpropagation neural network can be summarized in 
the following steps: 

• Start with assigning arbitrary values for the weights W  
• Next, calculate the outputs Y(t) and the errors E(t) for 

that set of weights 
• Then, calculate the derivatives of E(t) with respect to 

all of the weights. 

• If increasing a given weight would lead to more error, 
that weight is reduced and vice versa 

• After adjusting all the weights up or down, this 
process is restarted and continued until the weights 
and the errors settle down 

The uniqueness of general backpropagation lies in the 
method used to calculate the exact derivatives for all of the 
weights in only one pass through the system. 

The GBPN works as two pass: forward evaluations, which 
use the input events to calculate the network desired output Ŷ ; 
and Reverse Evaluation Werbos [26] chain rule for ordered 
derivatives to calculate the error and adjust the weight, as show 
in Figure 8. 

 

Ŷ

Ŷ

 
 

Figure 8: Forward and backward flow of GBPN 
 
In this paper, the input X is considered to be the set of sub-3D-
images, which represents the motion primitives. Each sub-3D-
image is a “slice” of the whole 3D image computed by the 
PALRF. In particular, X is a set of 5x121 matrices. The output 
vector Y contains the labels of the sub-3D-images.     
 
5.1 Training Data of the Neural Network 

 
In this section, we show samples of training data for the 

neural network. These training data sets fall into five 
categories, as shown in Table 1. The HMMR has a library of 
strategies for each of the five sets. The robot uses different 
locomotion techniques in dealing with each case. This is 
explained in the following table. 
 
Table 1: 3D images of different terrains are used as training set for 

the neural network 
 

Clear: 
Relatively clear 
terrain, traversable 
without changing 
configuration from 
normal cruising mode 

20 40 60 80 100 120 140 160 180 200 220
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Low step: 
 
An obstruction that is 
below the height of 
the tracks of the 
HMMR 

High step: 
 
A step of sufficient 
height so as to require 
more sophisticated 
climbing techniques 

Stairs: 
 
A common special 
case for a series of 
low steps 

Wall: 
 
An obstacle that is 
not traversable with 
any available strategy 
from the library 

 
5.2 Testing the BNN 
 

20 cases were collected for each of the above mentioned 
categories for training. Another set of 10 cases were used for 
testing. The neural network showed very good classification. 
The percentages of correct classifications for each case are 
summarized in the following table. 

 
Table 2: Testing the recognition capability of the BNN-based 

system 
 

Case Small Step 
(SS) 

Stair 
(S) 

High Step 
(HS) 

Wall 
(W) 

Number of tested 
cases 

10 10 10 10 

Number of missed 
classifications 

0 1 2 1 

 
Note that the testing data varies in shape, distance and 
orientation from the training data; however, the robot was able 
to approximate it into one of the known cases.  

6. SIMULATION RESULTS 
 
In this section, we have tested the motion primitive 

algorithm on a scenario that is shown in Figure 9. The local 

planning algorithm was able to initialize 11 motion primitives 
in the frontal direction of the robot, as explained in Figure 3. 
The Motion Primitives (MPs) are input to the BNN and 
consequentially labeled by their level of difficulty, as shown in 
Table 3. 

 
Table 3: Labeling results of the MPs shown in Figure 9 
 

Label W S HS 
MPs 1,2,3,9,10,11 4 5,6,7 

 
Note that the levels of difficulty are listed from easy to 

difficult as: flat terrain, small step, high step, stair, and wall. 
Therefore, according to Table 3, the primitives 4, 5 and 6 will 
have the easiest path. Considering the configuration of the 
robot and the global planning, motion primitive 6 would be the 
winner. 

 

 
 
Figure 9: Sample scenario to test the motion-primitive algorithm 
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7. CONCLUSIONS 
 
In this paper, we have established a novel framework for 

local planning applied to climbing robots as well as to robots 
working in irregular terrains. The novel terrain classification 

The winning motion primitive 
11

4

3

2

1

6 7 
8

9

10

5

Figure 10: 3D representation of the environment in 
Figure 9 showing the winning motion primitive 

(dimensions in color bar are in [mm]) 



 7 Copyright © 2010 by ASME 

algorithm is accomplished by using motion primitives and a 
supervised neural network. The feature selection algorithm of 
the terrain is based on a 3D image of a Pitch Actuated Laser 
Range Finder. Features of several types of terrains were used to 
train a backpropagation neural network. The neural network has 
been tested in a number of environments. The simulation results 
show correct classification. The output generated was the 
correct path with the lowest degree of difficulty.  
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