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Robust adaptive input-output control for a class of modular robotic systems via
inverse optimality theory
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ABSTRACT
This paper introduces a model-based robust adaptive input-output control framework for a family of
robotic systems that include under-actuation, nonholonomic, and constrained properties. The proposed
control framework can provide fast and effective controller generation for modular robotic systems (MRS)
with interchangeable subsystems. The controller was first derived based on the general properties of non-
holonomic robotic dynamicmodels while considering under-actuation and constraints. Then the adaptive
control technique is introduced to overcome the effects such as inertia and force uncertainties. Robust aug-
mentation is implemented via inverse optimality theory, which is verifiedwith respect to ameaningful cost
function. A simulation study on an aerial manipulator systemwith model uncertainty and disturbance was
provided to demonstrate the characteristics and effectiveness of the proposed controller.
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1. Introduction

Modular and reconfigurable robotic systems (Davey et al., 2012;
Moubarak & Ben-Tzvi, 2012; Wei et al., 2011; Yim et al., 2007)
free robots from being constrained to a fixed structure design,
and thereby allow assembling different roboticmodules into dif-
ferent configurations for different applications. A typical exam-
ple of this concept is presented in Figure 1, where an aerial
manipulator is assembled from UAV and manipulator sub-
systems. Note that this setting is very similar to the classic
spacecraft-manipulator problem (H. Wang, 2011) except that
for modular robotic systems (MRS), the modular components
could have various types and quantities, and they could be cou-
pledwith various constraints. This unique characteristic ofMRS
leads to the modelling and control challenges that they need
to consider various modules and constraints as well as their
combinations.

An efficient way to address the modelling challenge is to
model each module separately and then, depending on the con-
figuration, combine the individual dynamics using constraints
(Shah et al., 2012). This way, the vast model space problem is
simplified to a combinatorial problem of finite dynamic model
libraries. More importantly, the individual dynamics usually
can be modelled beforehand, making this approach more flex-
ible than the whole-body modelling approach (Buschmann
et al., 2006). However, introducing constraints into the system
will inevitably result in redundancy of states and sometimes
involve nonholonomic constraints and under-actuation (e.g. the
quad-arm modules in Figure 1). Therefore, an essential feature
to address the control challenge is to provide a solution for a
constrained, nonholonomic and under-actuated robotic system.

Control methods that require configuration specific training
(Melek & Goldenberg, 2003; Peters et al., 2003) and planning
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(Guo &Woo, 2003; Sugeno, 1985) are not usually applicable for
this problem, which leads to the selection of model-based con-
trol (MBC). However, MBC may not perform well in practice
due to model uncertainties and disturbances. Therefore, adap-
tiveness and robustness are introduced to improve the practi-
cability of controllers. A variety of adaptive control methods
have been widely studied and explored over years, as they are
frequently applied in control systems for various complex sys-
tems such as spacecrafts (Slotine & Di Benedetto, 1990; Yoon
& Tsiotras, 2008) and robots (Ortega & Spong, 1989; Slotine
& Li, 1987). While a few researchers considered the constraint
characteristic (Arimoto et al., 1993; Whitcomb et al., 1997) and
under-actuation characteristic (Gu & Xu, 1995; K. D. Nguyen
& Dankowicz, 2015) cases separately, the adaptive control for
systems with both characteristics is a relatively less explored
topic.

Amongst the existing robust control methods, nonlinear
robust control deals with the nonlinearity of the system directly.
As a class of nonlinear optimal control problems (Aliyu, 2011;
Freeman & Kokotovic, 2008; Lewis et al., 2012), some non-
linear robust controllers require solving the Hamilton-Jacobi-
Isaac (HJI) partial differential equation introduced by their
cost functions, which remain a challenge since the current
algorithms (such as State Dependent Riccati Equation (SDRE)
(Cloutier, 1997; Xin & Balakrishnan, 2005)) cannot guaran-
tee a globally optimal solution. Alternatively, inverse optimal-
ity approaches the solution with respect to a meaningful per-
formance function based on a stabilising Control Lyapunov
Function (CLF), which does not require online calculation
and can obtain a globally optimal solution. The technique has
been applied to multibody systems such as spacecrafts (Luo
et al., 2005) and legged robots (Ames et al., 2014; Q. Nguyen
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Figure 1. A modular robotic system (aerial manipulator) combined from compat-
ible modules.

& Sreenath, 2015). This also provides a potential solution for
the robust adaptive control framework, which has not yet been
fully explored.

Therefore, this paper focuses on applying the existing inverse
optimal robust adaptive control technique on a class of MRS,
for which the whole body dynamics usually incorporates non-
holonomic constraints and under-actuation. Focusing on this
unique problem with considerations such as model uncertain-
ties and external disturbances usually apparent in MRS, this
paper solves the problem by designing an inverse optimal robust
adaptive controller. More specifically, the proposed controller
has the following features:

(F1) The control law is applicable to a wide range of robotic
systems due to the more general nonholonomic con-
straints and under-actuation characteristics.

(F2) A systematic adaptive control approach is established
for overcoming model uncertainties in the system’s iner-
tia properties and generalised forces, and guarantees
error convergence and adaptive parameters under proper
conditions.

(F3) H∞ robustness augmentation is applied for L2 distur-
bance attenuation via inverse optimal theory. The inte-
grated controller is proven to be globally optimal for a
meaningful cost function that leads to a global asymptotic
convergence of the corresponding robust adaptive control
Lyapunov function (RACLF).

A sample simulation case on the aerial manipulator sys-
tem shown in Figure 1 was studied to validate the proposed
controller framework.

The outline of the remainder of this paper is as follows.
Section 2 first reviews the necessary theoretical background of
MRS dynamics, model-based control, and the inverse optimal-
ity for robust adaptive control, and then formulates the core
problem to be solved. Section 3 discusses the robust adaptive
controller design and the proof of inverse optimality. Section 4
provides the simulation case-study of an aerialmanipulator, and
Section 5 draws the conclusion of this research.

2. Theoretical background and problem statement

This section presents the necessary theoretical background for
model-based control and robust adaptive controller through
inverse optimality. These two components constitute the foun-
dation of the proposed controller in Section 3. The notations
used in this paper are shown in Table 1.

Table 1. Mathematical notations.

‖z‖ Euclidean norm of vector z
z1×z2 Multiplications of quaternions z1 (4 × 1) and z2 (4 × 1)
z̄ Conjugation of quaternion z (4 × 1)
zm×n Am × nmatrix with all elements as z ∈ R

In Identity matrix of rank n (dimensions fit in its block if no subscript)
Z−T Inverse of the transpose of square matrix Z
Z+ Moore-Penrose pseudo inverse of a matrix Z
Z > 0 Square matrix Z is positive definite
Z < 0 Square matrix Z is negative definite
‖Z‖ L2 norm of matrix Z
LYZ Lie derivative of function Z(x)with respect to function Y(x)
{X\Y} The set of X excluding set Y where Y ⊂ X

2.1 Modular robotic system dynamics andmodel-based
control

The dynamical model of a robotic system can be written as
(Griffin & Grizzle, 2017; Kane & Levinson, 1985; Kurdila &
Ben-Tzvi, 2019)

M(q, ξ)q̈= H(q, q̇, ξ)+ JTu (q, ξ)u + JTλ (q, ξ)λ (1a)

ξ̇= Jξ (q, ξ)q̇ +�ξ(q, ξ) (1b)

where q ∈ R
nq is the generalised coordinate vector; u ∈ R

nu is
the control input; M ∈ R

nq×nq is the inertia matrix, which is
positive definite;H ∈ R

nq is the unified generalised force, which
involves Coriolis forces, centripetal forces, potential energy
forces, and energy dissipation forces, etc.; and Ju ∈ R

nu×nq is
the input Jacobian matrix. Note that Equation (1) follows a
nonholonomic formulation by adopting Equation (1b) that gov-
erns the dynamics of the nonholonomic state ξ ∈ R

nξ , where
Jξ ∈ R

nξ×nq is the nonholonomic Jacobian, and �ξ ∈ R
nξ is

the remaining nonlinear term of q and ξ . An example of the
nonholonomic state is the quaternion, which is often used to
describe the 3D rotation (Fresk & Nikolakopoulos, 2013). The
relationship between the quaternion coordinate ξquat ∈ R

4 and
the angular velocity ωquat ∈ R

3 can be written as

ξ̇quat = 0.5(ξquat ×
[
0 ωT

quat

]T
) (2)

Therefore, the quaternion cannot be explicitly expressed in
terms of the integral of angular velocity.

For systems with multiple modules, an easy way to acquire
the whole body dynamics is to assemble the modular com-
ponent dynamics directly with appropriate constraints. For a
systemwith nmodules, the dynamical model from Equation (1)
can be constructed with the dynamical terms of its subsystems
through

for X = M, Ju, Jξ : X = diag(X1,X2, . . . ,Xn)

for X = q, ξ , u,H,�ξ : X = [XT
1 ,X

T
2 , . . . ,X

T
n ]

T

where Xi (i = 1, 2, . . . , n) stands for a dynamical term (vector
or matrix) from the model equation Equation (1) of ith mod-
ule; X = diag(X1,X2, . . . ,Xn) denotes having square matrices
Xi as the diagonal components of the block matrix X, which is a
dynamical term of the assembled system. Therefore, the assem-
bled dynamical model incorporates all the model information
of its modules. Modelling modular robot dynamics using this
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approach has the advantage of being able to quickly acquiring
the dynamics of the whole system without remodelling or rear-
ranging individual properties. For instance, the inertial matrix
inverse can be obtained efficiently by processing the individ-
ual inertial matrix of each module in parallel, and applying the
diagonal block matrix

M−1 = diag(M−1
1 ,M−1

2 , . . . ,M−1
n−1,M

−1
n ) (3)

The coupling and interaction between the module dynam-
ics are realised with the Lagrange multiplier (constraint force)
λ ∈ R

nλ . The constraint force and its direction characterised
by Jλ ∈ R

nλ×nq are obtained from the constraint equations.
The dynamic model in Equation (1) is compatible with non-
holonomic constraints, as long as these constraints follow the
representation in terms of the time derivatives as shown in
Equation (4), where rλ : R+ × R

nq × R
nq × R

nξ → R
nλ is the

constraint reference vector.

ṙλ(t, q, q̇, ξ) = Jλ(q, ξ)q̇; r̈λ = Jλq̈ + J̇λq̇ (4)

In most cases, r̈λ = 0; however, it may not necessarily be zero
if the constraint is defined as time varying or state dependent.
Based on these properties, the constraint force can be derived by
substituting the q̈ from Equation (1a) into Equation (4), which
results in

λ = �−1
λ (−JλM−1(H + JTu u)− J̇λq̇ + r̈λ) (5)

where �λ = JλM−1JTλ is defined as the constraint decoupling
matrix. In this study, the fully-constrained or over-constrained
situation will not be considered. Therefore, the sufficient condi-
tion of (rank(Jλ) = nλ; nq > nλ) is provided to make sure that
the system is under-constrained. This condition also assures
that �λ is automatically invertible. By substituting constraint
forces into Equation (1a), the state space dynamics could be
obtained as

ẋ =
⎡
⎣ q̇
M−1�λH + M−1JTλ �

−1
λ (−J̇λq̇ + r̈λ)

Jξ q̇ +�ξ

⎤
⎦

+
⎡
⎣ 0
M−1�λJTu

0

⎤
⎦ u (6)

where x = [qT q̇T ξT]T is the state vector and �λ = (Inq −
JTλ �

−1
λ JλM−1) is defined as the mapper that maps the system

from the unconstrained manifold to the constrained manifold.
A specific example of anMRS system with constraints and non-
holonomic states will be provided later in Section 4, where the
modelling of the aerial manipulator previously presented in
Figure 1 will be explained in detail.

To control this system, the frequently used MBC approach
is to design output functions such that the system is driven
onto the desired manifold. As the system has nq generalised
coordinates and nu actuator inputs, a set of control outputs,
y ∈ R

ny and its time derivatives, can be defined according to
Equation (7). The output function h : R

2nq+nξ → R
ny is a class

C2 function, and �h ∈ R
ny is the remaining nonlinear term

of q and ξ . The restriction on h (ny ≤ min(nu, nq − nλ)) is a
necessary condition for the outputs to be controllable.

y = h(x); ẏ = Jh(q, ξ)q̇ +�h(q, ξ); ÿ = Jhq̈ + J̇hq̇ + �̇h
(7)

With defining rh(t, x) : R+ × R
2nq+nξ → R

ny as the reference
function for y, the output dynamics is

r̈h − J̇hq̇ − �̇h

= JhM−1�λH + JhM−1�λJTu u + JhM−1JTλ �
−1
λ (r̈λ − J̇λq̇)

(8)

Therefore, the control effort is derived in Equation (9a) with the
feed-forward controller uf and feedback controllers ub defined
in Equations (9b) and (9c), respectively.

u = uf + ub (9a)

uf = �
†
u
[
(r̈h − J̇hq̇ − �̇h)

− JhM−1(�λH + JTλ �
−1
λ (r̈λ − J̇λq̇)

)]
(9b)

ub = �
†
uψ(t, y, rh) (9c)

where �†
u = O− 1

2 (�uO− 1
2 )+ is the weighted Moore-Penrose

inverse term for the input decouplingmatrix�u = JhM−1�λJTu ,
with the requirement of rank(�u) = ny. O ∈ R

nu×nu (Righetti
et al., 2011) is a symmetric positive definite matrix. Apparently,
�

†
u = �−1

u for ny = nu. Function ψ can be designed accord-
ing to the applied control scheme, e.g. a commonly used PD
controller

uPD = �
†
uψPD = �

†
u
(
KP(rh − y)+ KD(ṙh − ẏ)

)
(10)

2.2 Robust adaptive control via inverse optimality

Although the MBC works well in theory, it ignores the model
uncertainties as well as the external disturbances, both of which
are frequently encountered in practice. Therefore, a robust
adaptive controller with inverse optimality was proposed. Con-
sider a system that contains model inaccuracy and disturbance,
as in the following form

ẋ(t) = f (x)+ g(x)u + F(x)θ + G(x)w (11)

where x ∈ R
nx is the state vector, u ∈ R

nu is the input vector,
θ ∈ R

nθ is the constant uncertainty parameter vector, and w ∈
R
nw is the disturbance vector.

Definition 2.1 (Krstic & Deng, 1998; Krstic & Li, 1998; Luo
et al., 2005): For the system in Equation (11), a smooth func-
tionV(x, θ) : R

nx × R
nθ → R+ is a robust adaptive control Lya-

punov function, if there exists a function α(x, θ) smooth on
{Rnx\{0}} × R

nθ that satisfies α(0, θ) ≡ 0, a continuous func-
tion Q(x, θ) : R

nx × R
nθ → R+, and a matrix � = �T > 0 so

that the control law u = α(x, θ) satisfies

∂V
∂x

(
f + gu + F

(
θ + �

(
∂V
∂θ

)T
)
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+ G
γ (2‖LGV‖) (LGV)
T

‖LGV‖2
)

≤ −Q(x, θ) (12)

for the auxiliary control system of

ẋ = f + gu + F

(
θ + �

(
∂V
∂θ

)T
)

+ G
γ (2‖LGV‖) (LGV)
T

‖LGV‖2
(13)

where γ (σ ) is a class K∞ function whose derivative γ ′(σ ) =
∂γ /∂σ is also a class K∞ function. The function 
γ (σ )

denotes the Legendre-Fenchel transformation of 
γ (σ ) =
σ(γ ′)−1(σ )− γ ((γ ′)−1(σ )) = ∫ σ

0 (γ
′)−1(s) ds.

Remark 2.1 (Krstic & Deng, 1998; Krstic & Li, 1998; Luo
et al., 2005): It has been shown that F = 0 will lead to the
definition of robust control Lyapunov function (RCLF), and
G = 0 will lead to the definition of adaptive control Lyapunov
function (ACLF), respectively. Definition 2.1 is a consensus of
both theories.

In addition to the definition of RACLF, the solvability of the
adaptive control problem is also revisited. It is provided that the
estimation of θ is θ̂ (t), and the estimation error is θ̃ = θ̂ − θ .

Definition 2.2 (Krstic & Deng, 1998; Luo et al., 2005): The
adaptive control problem of the system in Equation (11) is solv-
able, if there exists a function α(x, θ̂ ) smooth on {Rnx\{0}} ×
R
nθ and satisfiesα(0, θ̂ ) ≡ 0, a smooth functionβ(x, θ̂ ) : R

nx ×
R
nθ → R

nθ×nθ , and a matrix � = �T > 0 such that

u = α(x, θ̂ ); ˙̂
θ = �−1β(x, θ̂ ) (14)

guarantees the global boundedness of the tuple (x, θ̂ ), and
asymptotic convergence of x, for all θ ∈ R

nθ .

If V0(x, θ) is proven to be a RACLF together with the sta-
bilising controller as u = α(x, θ) for the auxiliary system in
Equation (13), the control law in Definition 2.2 will asymptot-
ically stabilise the system in Equation (11) with respect to the
newly constructed Lyapunov function V1 = V0 + (1/2)θ̃T�θ̃
(Krstic & Deng, 1998). Based on this result, the theorem of
inverse optimal robust adaptive control can be established.

Theorem 2.1 (Luo et al., 2005): Based on the condition in Defi-
nitions 2.1 and 2.2, if there exists a function R(x, θ) that satisfies
R = RT > 0 so that the control law

u = α0(x, θ) = −R(x, θ)−1(LgV)T (15)

globally asymptotically stabilises Equation (13) with respect to
V(x, θ), then, the adaptive control law

u = α(x, θ̂ ) = −c1R(x, θ̂ )−1(LgV)T ;

˙̂
θ = �−1β(x, θ̂ ) = �−1(LFV)T (16)

with c1 ≥ 2, solves the inverse optimal H∞ adaptive control prob-
lem for the system described in Equation (11) by minimising the
cost function

Jα(u) = sup
w∈W

{
lim
t→∞

[
c1θ̃T�θ̃ + 2c1V(x, θ̂ )

+
∫ t

0

(
l(x, θ̂ )+ uTR(x, θ̂ )u − c1c2γ

(‖w‖
c2

))
dt
]}
(17)

for any c2 ∈ (0, 2], where

l(x, θ̂ ) = −2c1Lf V − 2c1LFV

(
θ̂ + �

(
∂V
∂θ̂

)T
)

− c1c2
γ (2‖LGV‖)+ c21LgVR
−1(LgV)T (18)

and W is the set of locally bounded functions of x.

Remark 2.2 (Luo et al., 2005): Similar to Remark 1, by assum-
ing the parameter θ is known and setting � = 0, the inverse
optimal robust control in Equation (15)–(18) yields the RCLF
control law and its corresponding cost function. By setting
w = 0, the ACLF controller that minimises its cost function
can be acquired. As the two components of the RACLF, the two
control laws are not coupled and can be applied separately.

2.3 Problem statement

The above theorems provide an effective way to design the con-
troller to address model uncertainties and disturbance. How-
ever, it cannot be applied directly to the previously discussed
MRS due to the unique nonholonomic, under-actuated, and con-
strained features. Therefore, the core of this work is to extend the
above theories to the nonholonomically constrained modular
robotic system, which has the following dynamics

ẋ =
⎡
⎣ q̇
M−1(H + JTλ λ)

Jξ q̇ +�ξ

⎤
⎦+

⎡
⎣ 0
M−1JTu

0

⎤
⎦ u

+
⎡
⎣ 0
M−1fθ

0

⎤
⎦+

⎡
⎣ 0
M−1fw

0

⎤
⎦ ; (19)

where fθ ∈ R
nq is themodel uncertainty and fw ∈ R

nq is the dis-
turbance. For this study, the output of the system is assumed
to be undisturbed, which remains as Equation (7). It should
be noted that fθ and fw will indirectly affect ξ and q̇, since ξ
and q̇ are integrated from q̈. In this case, any uncertainties and
disturbances affecting ξ and q̇ can be included in fθ and fw. It
should also be noted that the constraint uncertainties or distur-
bances are not considered, since any inaccuracy in the kinematic
constraints can always be represented alternatively in the state
equations. Under these conditions, the original controller may
not be able to assure system convergence towards the desired
trajectory. The controller may not even be able to stabilise the
system if the uncertainties and disturbances are large.

3. Robust adaptive control solutions

To solve the formulated problem, adaptive control is studied
first with the assumption fw = 0. The robustness is then added
through specific CLF design.



1902 J. WANG ET AL.

3.1 Adaptive control andmodel uncertainty assumptions

To formulate the adpative control law with fw = 0, the error
vector is defined as

e =
⎡
⎣ eI
eP
eD

⎤
⎦ =

⎡
⎣
∫
(y − rh) dt
y − rh
ẏ − ṙh

⎤
⎦ (20)

where eI is the integral error. To limit the scope of the study,
some reasonable assumptions (Luo et al., 2005) are made as
follows

(S1) fθ has the structure of

fθ = Y(x)θ + L�(q, ξ , θ)q̈ (21)

where Y : R
2nq+nξ → R

nq×nθ is the state uncertainty
regressor function of class C∞ and L� : R

nq × R
nξ ×

R
nθ → R

nq×nq is the acceleration uncertainty map of
class C∞ that satisfies L�(q, ε, 0) = 0.

(S2) There exists a class C∞ regressor function L(q, ξ , q̈) :
R
2nq+nξ × R

nq → R
nq×nθ , so that L�(q, ξ , θ)q̈ satisfies

L�(q, ξ , θ)q̈ = L(q, ξ , q̈)θ (22)

Here, (S1) is made based on the achievable setup that all
of the states are measured with sensors. The structure demon-
strates the existence of uncertainties from the force and inertia,
which covers a wide variety of uncertainty sources. For (S2),
the relationship in Equation (22) indicates the jointly affine
property of the term L�(q, ξ , θ)q̈ in the tuple (θ , q̈).

Furthermore, for the input-output control problem where
Jh �= Inq , a conversion between q̈ and the output ÿ is required
(Gu & Xu, 1995). It is possible to select the internal states of the
control systemas qi ∈ R

nq−ny based on annth rank permutation
matrix S such that

[
ÿ − J̇hq̇ − �̇h

q̈i

]
=
[

JhS−1[
0 I(n−ny)×(n−ny)

]] Sq̈ = JsSq̈; (23)

Since the acceleration of the output tracking error is ėD = ÿ −
r̈h = Jhq̈ + J̇hq̇ + �̇h − r̈h, the term y can be represented with
ėD and r̈h. Therefore, the term L(x, q̈)θ can be equivalently
converted to

L(x, q̈)θ = Lo(x, ėD)θ + Li(x, r̈h, q̈i)θ (24)

where Lo and Li are defined as

Lo(x, ėD) = L
(
x, (JsS)−1

[
ėTD 0T(nq−ny)×1

]T)
; (25a)

Li(x, r̈h, q̈i) = L
(
x, (JsS)−1

[
(r̈h − J̇hq̇ − �̇h)

T q̈Ti
]T))

.

(25b)

Base on the setup, provided that the estimation of θ is
θ̂ (t) ∈ R

nθ , by adopting the feed-forward controller shown in

Equation (9b) and the feedback controller as ub = �
†
uψ(x, e, q̈i,

θ̂ ), the error dynamics becomes

ėD = JhM−1�λ(Y(x)θ + Lo(x, ėD)θ + Li(x, r̈h, q̈i)θ)+ ψ

(26)
Therefore, the final error dynamics is obtained as

ė =
⎡
⎣0 Iny 0
0 0 Iny
0 0 0

⎤
⎦ e +

⎡
⎣ 0

0
JhM−1�λ

(
Y(x)+ Li

)
θ

⎤
⎦

+
⎡
⎣ 0

0
JhM−1�λLoθ

⎤
⎦+

⎡
⎣ 0
0
ψ

⎤
⎦ (27)

Here, based on (S2), more intermediate terms could be defined
as

L�o(x, θ)ėD = Lo(x, ėD)θ (28a)

L1(x, ėD)θ = JhM−1�λL�o(x, θ)ėD (28b)

L�1(x, θ)ėD = L1(x, ėD)θ (28c)

F(x, r̈h, q̈i) = JhM−1�λ
(
Y(x)+ Li(x, r̈h, q̈i)

)
(28d)

where L�o(x, 0) = L�1(x, 0) = 0. Therefore, the system can be
rearranged so that the right hand side of the equation involves
no more than a 2nd order derivative of the error.⎡
⎣I 0 0
0 I 0
0 0 I − L�1

⎤
⎦ ė =

⎡
⎣0 I 0
0 0 I
0 0 0

⎤
⎦ e +

⎡
⎣ 0

0
Fθ

⎤
⎦+

⎡
⎣ 0
0
ψ

⎤
⎦ ; (29)

As in Equation (29), which demonstrates the error state system,
the term L�1 will affect the complexity of the control prob-
lem. Omitting L�1 will lead to the inability to estimate some
of the inertial uncertainties in the system. The solution lies in
analysing the adaptive control Lyapunov function. Referring to
Definitions 2.1, 2.2, and Remark 2.1, an ACLF (under zero dis-
turbance) candidate based on Equation (29) can be selected
as

V1,0 = 1
2
eTPee; (30)

where Pe ∈ R
3ny × R

3ny is a constant symmetric positive def-
inite matrix and θ̃ = θ̂ − θ is the parameter estimation error.
Similar to Equation (12), it is easy to see that theACLF condition
requires satisfying the auxiliary control problem of

ė =
⎡
⎣0 I 0
0 0 I
0 0 0

⎤
⎦ e +

⎡
⎣ 0

0
Fθ + L�1ėD

⎤
⎦+

⎡
⎣ 0

0
ψ1,0

⎤
⎦ (31)

with the controller ψ1,0. By assuming ψ1,0 as

ψ1,0(x, e, θ) = −Fθ + (I − L�1)ψPID (32)

with ψPID is defined as

ψPID(e) = −(KIeI + KPeP + KDeD) (33)

where KI , KP, and KD are constant symmetric positive definite
matrices, the auxiliary system becomes⎡

⎣I 0 0
0 I 0
0 0 I − L�1

⎤
⎦ ė
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=
⎡
⎣ 0 I 0

0 0 I
−(I − L�1)KI −(I − L�1)KP −(I − L�1)KD

⎤
⎦ e

which yields

L�1ėD = L�1ψPID (34)

Equation (34) is used to approximate the uncertain dynamics
L�1ėD ≈ L�1ψPID. It should be noted that L�1 can also be viewed
as the adaptive gain-tuning parameter matrix for the PID con-
troller. Thus, it can be concluded that Equation (30) is an ACLF
candidate if the following requirement is satisfied

ATPe + PeA < 0; A =
⎡
⎣ 0 I 0

0 0 I
−KI −KP −KD

⎤
⎦ (35)

Proposition 3.1: For the error control system in Equation (29),
with L�1ėD ≈ L�1ψPID through Equation (34), and the PID gains
(i.e. KI, KP, and KD) satisfying the condition in Equation (35),
the controller

ψ1(x, e, q̈i, θ̂ ) = −(F(x, r̈h, q̈i)+ L1(x,ψPID))θ̂ + ψPID (36)

and the adaptive update law

˙̂
θ1 = �−1(F(x, r̈h, q̈i)+ L1(x,ψPID)

)T
× (PTe,IDeI + PTe,PDeP + Pe,DeD) (37)

where Pe,ID,Pe,PD,Pe,D ∈ R
ny × R

ny are components of

Pe =
⎡
⎣ Pe,I Pe,PI Pe,ID
PTe,PI Pe,P Pe,PD
PTe,ID PTe,PD Pe,D

⎤
⎦

will lead to the asymptotic stabilisation of the system with respect
to the full Lyapunov function

V1 = 1
2
eTPee + 1

2
θ̃T�θ̃ ; (38)

Proof: Based on Equation (28c), by substituting the controller
from Equation (36) into Equation (29), the error dynamics
becomes (recall θ̃ = θ̂ − θ)

ė =
⎡
⎣0 I 0
0 0 I
0 0 0

⎤
⎦ e −

⎡
⎣ 0

0
Fθ̃ − L�1(x, θ)ėD + L�1(x, θ̂ )ψPID

⎤
⎦

+
⎡
⎣ 0

0
ψPID

⎤
⎦ (39)

with L�1(x, θ̂ )ėD ≈ L�1(x, θ̂ )ψPID based on Equation (34), the
above equation is further simplified as

ė = Ae −
⎡
⎣ 0

0(
F + L1(x, ėD)

)
θ̃

⎤
⎦ (40)

Differentiating the Lyapunov function yields

V̇1 = 1
2
ėTPee + 1

2
eTPeė + 1

2
˙̃
θT�θ̃ + 1

2
θ̃T� ˙̃

θ (41)

Substituting the error dynamics from Equation (40) and the
parameter update dynamics from Equations (37), (41) becomes

V̇1 = 1
2
eT(ATPe + PeA)e − [

0 0 θ̃T(F + L1)T
]
Pee

+ θ̃T(F + L1)T(PTe,IDeI + PTe,PDeP + PTe,DeD)

= 1
2
eT(ATPe + PeA)e < 0 (42)

�

Remark 3.1: Anunderstatement for the stability of the adaptive
controller in Proposition 3.1 is the boundedness of ėD (Daw-
son et al., 1991; Spong & Ortega, 1990; H. Wang, 2011). From
Equations (28c) and (40), it is obtained that

(
I + L�1(x, θ̂ )− L�1(x, θ)

)
ėD = −Fθ̃ + ψPID (43)

This is an indication that the boundedness of ėD is provided
by the invertibility of (I + L�1(x, θ̂ )− L�1(x, θ)), which involves
the estimated inertia uncertainty. From Equation (28), it can
be recognised that L�1 has the same unit dimension as the ratio
between inertia matrices; with Jh as a kinematic term,M−1φλL�o
is comparable to the ratio between the modelled inertiaM and
inertia uncertain L�o mapped on the constrainedmanifold by φλ.
Therefore, similar to the case discussed in Dawson et al. (1991),
the existence of (I + L�1(x, θ̂ )− L�1(x, θ))

−1 may be ensured by
reasonable adjustingM, the proposed controller has limitations
in the applications where L�o is significant compared toM.

Remark 3.2: Another important condition for the adaptive
controller is the availability of acceleration-related terms L�1ėD
and q̈i. Since accelerations are affected by system inputs, the
closed-form solution for these terms may not be available (Gu
& Xu, 1995). In some cases where the knowledge of the system
is available, L�1ėD and q̈i may be estimated by forces and con-
trol inputs through the expression of e and x (as in the case of
this study). This strategy, however, has limitations in the pres-
ence of significant model uncertainties and disturbances. It is
also possible to acquire L�1ėD and q̈i through acceleration mea-
surement (Dawson et al., 1991; Ortega & Spong, 1989; Spong
& Ortega, 1990) or filtering (H. Wang, 2011). For adaptive
control stability, controllers designed using acceleration mea-
surements can only be applied to limited scenarios where high
precision measurement is available.
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3.2 Robust adaptive CLF design

A detailed process of robust adaptive controller design can now
be explained. Similarly, as there may be different sources where
the disturbances originate, assumptions are made to limit the
scope of the study, which are listed below

(S3) fw has the structure of fw = c2W(x)w (Ghorbel et al., 1998)
where c2 > 0 is the disturbance magnitude parameter;
W : R

2nq+nξ → R
nq×nw is the disturbance mapper of

class C∞; and w ∈ R
nw is the disturbance vector.

(S4) I − L�1 is invertible and locally bounded in x for fixed θ
(Ghorbel et al., 1998).

Assumption (S3) is made so that the disturbances are consid-
ered affine external inputs into the system, where c2 ∈ R+ is the
assumed sensitivity parameter. For (S4), recall from Remark 3.1
that L�1 is comparable to the ratio between modelled inertia M
and inertia uncertainty L�o. An unbounded inertia ratio usu-
ally indicates significant modelling inaccuracy that is unlikely
to be caused by model uncertainty, which makes it reasonable
to assume that for any θ the ratio between the known and
unknown inertia is bounded in x. The error control system that
involves disturbance can then be established based on the above
assumptions and Equation (29) as⎡
⎣I 0 0
0 I 0
0 0 I − L�1

⎤
⎦ ė

=
⎡
⎣0 I 0
0 0 I
0 0 0

⎤
⎦ e +

⎡
⎣ 0

0
Fθ + JhM−1�λ(c2W(x)w)+ ψ

⎤
⎦
(44)

From Equation (44), it can be recognised that (I − L�1) would
affect the relative sensitivity of system error towards the dis-
turbance. The coupling of uncertainty and disturbance will
increase the complexity of the problem, especially as the posi-
tiveness of (I − L�1) is unknown. By adopting the same auxiliary
controller ψ1,0 as defined in Equation (32) and based on (S4),
the equivalent ėD is now calculated as

ėD = ψPID + (I − L�1)
−1JhM−1�λWw (45)

As an essential process of the controller design, the selection of
RACLF is explained. Similar to Equation (30), the structure of
the RACLF is selected as

V2,0(e) = 1
2
eTPee (46)

Here, Pe is a symmetric positive definite matrix redesigned as

Pe =
⎡
⎣(k21 + k22 + k2i )K

TK (kikp + k2k3)KTK kiKTK
(kikp + k2k3)KTK (k23 + k2p)KTK kpKTK

kiKTK kpKTK KTK

⎤
⎦
(47)

where k = [ki, kp, k1, k2, k3] ∈ R
5+ are constant gain coefficients

and K ∈ R
ny×ny is constant and positive definite. Note that this

design does not cover all the available Lyapunov equations.

The design, however, offers a systematic way to design a vari-
ety of desired RACLFs. As a result, Equation (46) can also be
represented as

V2,0 = 1
2
k21e

T
I K

TKeI + 1
2
(k2KeI + k3KeP)T(k2KeI + k3KeP)

+ 1
2
(kiKeI + kpKeP + KeD)T(kiKeI + kpKeP + KeD)

(48)

By defining ε = kieI + kpeP + eD, it can be obtained that

ε̇ = kp(ε − kieI − kpeP)+ kieP

+ (L�1ėD + Fθ + JhM−1�λWw + ψ)

= kp(ε − kieI − kpeP)+ kieP

+ (L�1(ψPID + (I − L�1)
−1JhM−1�λWw)

+ Fθ + JhM−1�λWw + ψ)

= kp(ε − kieI − kpeP)+ kieP

+ (L�1ψPID + Fθ + (I − L�1)
−1JhM−1�λWw + ψ) (49)

with the equality of (I + L�1(I − L�1)
−1) = (I − L�1)

−1 (Hender-
son & Searle, 1981). Again, based on (S4), a new term G is
introduced such that

G = cwJhM−1�λW; (50)

where cw ∈ R+ satisfies ‖cω‖ ≥ c2 max(‖(I − L�1)
−1‖) in the

local domain of x for the fixed θ , which provides

max(‖Gw‖) ≥ c2 max(‖(I − L�1)
−1JhM−1�λWw‖) (51)

As such, Gw is used as a compromised alternative for (I −
L�1)

−1JhM−1�λWw in the following derivation.
Secondly, the relationship between the disturbance and

the control state is assumed. Referring to Definition 2.1 and
Remark 2.1, the classK∞ function γε for L2 disturbance atten-
uation (Luo et al., 2005) can be selected as

γε(σ ) = σ 2; (52)

According to Definition 2.1, it can be calculated that LGV2,0 =
εTKTKG. The assumed disturbance with respect to the control
state can then be obtained as

wε = 
γε (2‖(KTKG)Tε‖) (KTKG)Tε
‖(KTKG)Tε‖2 = (KTKG)Tε (53)

provided that the auxiliary controllerψ(x, e, θ) for the auxiliary
system has the structure of

ψPID = −R−1
ε (K

TK)Tε;

ψ2,0(x, e, θ) = −F(x, r̈h, q̈i)θ + (I − L�1(x, θ))ψPID (54)

where Rε(x, e) : R
2nq+nξ × R

3ny → R
ny×ny is symmetric posi-

tive definite. This leads to the final form of the auxiliary system
of

ε̇ = kp(ε − kieI − kpeP)+ kieP
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+ (−R−1
ε (K

TK)T + G(KTKG)T)ε (55)

Taking the time derivative of V2,0 yields

V̇2,0 = Lf V2,0 + εTKTK(−R−1
ε KTK + GGTKTK)ε

= α1eTI K
TKeI + α2eTI K

TKeP + α3eTPK
TKeP

+ εTKTK(β1eI + β2eP)

+ εTKTK(kpIny − R−1
ε KTK + GGTKTK)ε

where

Lf V2,0 = k21e
T
I K

TKeP + (k2eI + k3eP)TKTK(k2eP

+ k3(ε − kieI − kpeP))

+ kpεTKTKε − εTKTK(kp(kieI + kpeP)− kieP)

and

α1 = −kik2k3; α2 = k21 + k22 − kik23 − kpk2k3;

α3 = k2k3 − kpk23; β1 = k2k3 − kikp; β2 = k23 + ki − k2p

To guarantee the existence of a positive definite Rε that satis-
fies V̇2,0 < 0, additional sufficient design conditions are offered
such that

2a23β1β2 + α2 = 0; (1 + a1)a23β
2
1 + α1 = 0;

(1 + a2)a23β
2
2 + α3 = 0

Hence, the existence of a = [a1, a2, a3] ∈ R
3+ determines the

feasibility of the selected gain coefficients k. The compatible k
can also be designed by assuming an optimisation problemwith
constraints on k and a coefficients.

Assuming a suitable pair of k and c are found, the Lyapunov
function can be further simplified as

V̇2,0 = −a1a23β
2
1e

T
I K

TKeI − a2a23β
2
2e

T
PK

TKeP

− a23(β1eI + β2eP)TKTK(β1eI + β2eP)

+ εTKTK(β1eI + β2eP)

+ εTKTK(kpIny − R−1
ε KTK + GGTKTK)ε (56)

which also provides the alternative presentation of Lf V2,0 as

Lf V2,0 = −a1a23β
2
1e

T
I K

TKeI − a2a23β
2
2e

T
PK

TKeP + kpεTKTKε

− a23(β1eI + β2eP)TKTK(β1eI + β2eP)

+ εTKTK(β1eI + β2eP)

Therefore, by selecting Rε such that

R−1
ε = [

GGT + (
kp + 1/(a23)

)
(KTK)−1 + CR

]
(57)

whereCR ∈ R
ny×ny is the additional symmetric positive definite

magnitude matrix, the RACLF derivative yields

V̇2,0 = −a1a23β
2
1e

T
I K

TKeI − a2a23β
2
2e

T
PK

TKeP

− εTKTKCRKTKε − ((1/a3)ε − a3(β1eI + β2eP))T

× KTK((1/a3)ε − a3(β1eI + β2eP)) < −Q (58)

with Q(e, θ̂ ) : R
2ny × R

nθ → R+.

3.3 Main result

Based on these preparations, the theorem of the H∞ robust
adaptive controller is proposed, which is a conclusive result of
the study. Under the appropriate conditions, the main result is
applicable to under-actuated, constrained, and nonholonomic
robotic systems. The result is also consistentwith themotivation
as it is suitable for MRS.

Theorem 3.1: Based on the assumed conditions (S1)–(S4),
with the approximation L�1ėD ≈ L�1ψPID through Equation (34)
the disturbance conversion in Equation (51), ψPID defined in
Equation (54), Rε defined in Equation (57), uf (x, r̈h) defined in
Equation (9b), and ψ2 defined as

ψ2(x, e, q̈i, θ̂ ) = (I − L�1(x, θ̂ ))ψPID − F(x, r̈h, q̈i)θ̂ (59)

the RD2 input-output robust adaptive controller

u(x, e, q̈i, θ̂ ) = uf (x, r̈h)+�
†
uψ2(x, e, q̈i, θ̂ ) (60)

along with the update law

˙̂
θ2 = �−1[F(x, r̈h, q̈i)+ L1(x,ψPID)

]TKTKε (61)

can solve the trajectory tracking problem for the disturbed
dynamic system in Equation (19) by asymptotically stabilising the
Lyapunov function

V2(e, θ̂ ) = 1
2
(eTPee + θ̃T�θ̃) (62)

and minimising the cost function

Jε(ψε) = sup
w∈Wε

{
lim
t→∞

[
c1‖θ̃T�θ̃‖ + 2c1V2,0(x, e, θ̂ )

+
∫ t

0

(
lε(x, e, θ̂ )− c1‖w‖2 + ψT

ε Rε(x)ψε
)
dτ
]}
(63)

where

Lf V2 = Lf V2,0

lε = −2c1Lf V2 − c1
γε
(
2‖(KTKG)Tε‖)

+ c21ε
TKTKR−1

ε KTKε (64)

ψε = (
I − L�1(q, ξ , θ̂ )

)−1
(ψ2 + Fθ̂ ) = c1ψPID (65)

if it satisfies the conditions that K> 0, CR = CT
R > 0, k> 0, a> 0,

c1 > 2, cw > 0, and Wε is the set of locally bounded functions of
ε according to Equation (52).

The proof of this theorem can be found in Appendix.
Detailed explanation of Theorem 3.1 is provided below.

Remark 3.3: Theorem 3.1 proved that Equation (60) is an opti-
mal controller for the control problem in terms of ψε . It should
be noted that the controller, u, is not fully penalised by the cost
function. However, since uf , F, and L�1 have a fixed form and are
agnostic of the output or error vectors when the dynamic and
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estimated uncertainty model is determined,ψε is the only feed-
back component of the full controller that is optimisable by the
cost function.

Remark 3.4: The controller can only ensure the robustness
towards the compromised disturbance of Gw. In practice, the
robust control performance towards c2(I − L�1)

−1JhM−1�λWw
cannot be quantitatively analysed since (I − L�1)

−1 is unknown.
As L�1 is comparable to the ratio between modelled and uncer-
tain inertia in terms of the outputs (see previous explanation
in Remark 3.1), the ideal application condition of the con-
troller would be amodel with small inertia uncertainty (L�1 ∼ 0)
that results in (I − L�1)

−1 ∼ I, which decreases the difference
between Gw and c2(I − L�1)

−1JhM−1�λWw.

Remark 3.5: For the introduced RACLF design process, the
selection of the coefficient set k and a is affected by the dynam-
ics of the robotic system indirectly. The cost function for the
selection of an ideal k and the corresponding a is decided
by the desired control performance according to the resulting
Lyapunov function. However, k and a are independent of any
detailed properties of the system and are only used to tune the
ratio between the P, I, and D gains, which are uniformly shaped
by KTK.

4. Simulation

This section validates the proposed control technique through
a trajectory tracking control of a 3-DOF manipulator mounted
on a quadcopter platform, as shown in Figure 1, which involves
under-actuation and nonholonomic constraints at the same
time. The simulation is conducted based on a MATLAB tool-
box developed by the authors following Kane’s method (Kane
& Levinson, 1985; J. Wang et al., 2018).

4.1 System setup

The aerial manipulator model setup is shown in Figure 2(a),
where the centre of mass (COM) of the UAV is located at its
geometric centre. With the UAV and manipulator denoted as
system 1 and system 2, respectively, the whole system can be

modelled as[
M1 0
0 M2

] [
q̈1
q̈2

]
=
[
H1
H2

]
+
[
JTuf 0
0 JTuτ

][
uf
uτ

]

+
[
fθ1
fθ2

]
+
[
fw1
fw2

]
+ JTλ λ (66a)

[
ξ̇1
ξ̇2

]
=
[
Jξ1 0
0 Jξ2

] [
q̇1
q̇2

]
(66b)

with the generalised velocities being q̇1 = [ρ̇T1 ωT
1 ]

T and q̇2 =
[ρ̇T2 ωT

2 δ̇T2 ]
T . ρ ∈ R

3 represents the base translation; ω ∈ R
3

is the base angular velocity; δ2 ∈ R
3 is the manipulator joint

angles; the nonholonomic states ξ1 ∈ R
4 and ξ2 ∈ R

4 are the
quaternion coordinates of the UAV base and the manipu-
lator base, respectively. As mentioned in Equation (2) from
Section 2.1, these nonholonomic states are calculated as

ξ̇1 = 0.5
(
ξ1 ×

[
0 ωT

1

]T)
; ξ̇2 = 0.5

(
ξ2 ×

[
0 ωT

2

]T)
(67)

Jξ1 ∈ R
4×3 and Jξ2 ∈ R

4×3 are the Jacobian matrices calculated
from Equation (67); uf = [uf1 , uf2 , uf3 , uf4 ] ∈ R

4 are the quad-
copter rotor input (thrust forces, which is proportional to the
thrusts by coefficient κ); and uτ = [uτ1 , uτ2 , uτ3 ] ∈ R

3 are the
manipulator joint torques. In particular, Juf is defined as

Juf =
[
JTuf ,T JTuf ,R

]T
; Juf ,T = [04×2 14×1]TR(ξ1)

T (68)

where Juf ,T ∈ R
4×3 and Juf ,R ∈ R

4×3 are the input Jacobian sub-
matrices corresponding to the force and torque generated by uf ;
and TR : R

4 → R
3×3 is the rotation matrix calculated from ξ1

(Fresk & Nikolakopoulos, 2013).
For the fixture between the UAV base and the manipula-

tor (Fresk & Nikolakopoulos, 2013), the constraint equation is
obtained as

rλρ = 0 = ρ1 − ρ2; (69a)

rλξ = 0 = [03×1 I3] (ξ1 × ξ̄2) (69b)

where rλ = [rTλρ , r
T
λξ
]T ∈ R

6. Here, rλρ ∈ R
3 is the transla-

tional displacement constraint, and rλξ ∈ R
3 is the quaternion-

based rotation constraint. These two constraints fix the base

Figure 2. Simulation setups for the aerial manipulator case study. (a) Model information of aerial manipulator and (b) 3D view of trajectory and reference.
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of the manipulator with the UAV in terms of translational dis-
placements and rotations, respectively. The constraint Jacobian
matrix Jλ ∈ R

6×15 is calculated from rλ. The Lagrange multi-
plier λ ∈ R

6 calculated through Equation (5) is then applied
as the constraint force to ensure that the coupling between
the UAV and the manipulator systems satisfies Equation (69b).
Therefore, the dynamical effects from the forces and torques
experienced by one of the systems will pass to the other one
through λ.

The uncertainties in this model were assumed to be the
unknown point-mass θM attached on the COM of the UAV and
an unknown point-mass θm of the payload with an unknown
displacement θd along the final link of the arm. The uncer-
tain payload effect could be also represented as an unknown
point-mass θm1 at the beginning of the final link, an unknown
point-mass θm2 at the tip of the final link, and an unknown
moment θi along the radial direction of l4. Therefore, the set
of unknownproperties was selected as θ = [θM , θm1 , θm2 , θi]T ∈
R
4. In addition, the new parameters are uncoupled and affine in

the system. The default uncertainty parameters were selected to
have θm = 0.2 kg and θd = 0.025m equivalently.

The system disturbances w = [wT
1,f ,w

T
1,τ ,w

T
2,τ ]

T consist of
the forces w1,f ∈ R

3 and torques w1,τ ∈ R
3 acting on the UAV

COM, and the torques w2,τ ∈ R
3 acting on the manipulator

joints. Thus, the disturbances are also affine to the system. Har-
monic functions with different frequencies and amplitudes were
used to design the disturbances

w1,f (t) = (sin(5t)+ sin(7.5t)+ sin(10t))(13×1)

w1,τ (t) = 0.5(sin(5t)+ sin(7.5t)+ sin(10t))(13×1)

w2,τ (t) = 0.05(sin(5t)+ sin(7.5t)+ sin(10t))(13×1)

and the disturbance Jacobian matrixW was selected as

W1 =
[

I3 03×3
03×3 0.5I3

]
; W2 =

[
W1 06×3
03×6 0.05I3

]
;

W =
[
W1 06×9
09×6 W2

]T

The reasoning for this selection was based on the analysis of
JhM−1�λW, which showed that δ2 was most sensitive to the
disturbances. Therefore, the selection of W should also ensure
that the resulting control gain is not too large for the control
frequency. All the standard parameters and properties are sum-
marised in Table 2. To acquire accurate results, the simulation
time step was set to 0.5 × 10−3 s. The control input and param-
eter update rates were set to 200Hz. 40N saturation is set for uf .
The selected k satisfied the CLF design condition.

The whole system control was realised with multi-loop con-
trol (Caccavale et al., 2014) that the position control loop calcu-
lates the desired attitude for tracking by estimating the thrust
required for the system to follow a translational trajectory. It
should be noted that the control scheme was established based
on the assumption that the system response in attitude control is
almost instantaneous when the moment of inertia of the system
base is negligible compared to the control input capacity. The
control output and control input for the two loops were selected

Table 2. Model and control parameter selections.

Prop. Val. Prop. Val.

mUAV 5 kg marm 1.7 kg
θ [2 kg,−0.0625 kg, 0.3125 kg,

7.815e−4 kg − m2]
aA,1 [2, 0.5, 1]

ωc [0.5, 1, 1.5] k [0.1, 0.75, 0.05, 0.05, 0.25]
cw 0.1 c1 2
CR1 1.5I6 CR2 1.5I7
K1 diag([2, 2, 2, 2, 2, 2])0.5 K2 diag([2, 2, 2, 2, 3, 3, 3])0.5

� 0.5diag([101, 102, 102, 105]) l [0.15m, 0.07m, 0.075m, 0.1m]
κ 0.05 x(0) [01×30, 1, 01×3, 1, 01×3]T

as

y1 =
[
ρT1 δT2

]T
; y2 =

[
([0 0 1] ρ) δT2 ξTerr

]T
u1 =

[
uTvf uTτ

]T
; u2 =

[
uTf uTτ

]T
;

where ξerr ∈ R
3 is the quaternion error calculated between the

reference and state quaternion and uvf ∈ R
3 is the virtual force

acting at the COM of the UAV. The control framework will be
applied to both loops, whereasK1 ∈ R

6×6 andCR1 ∈ R
6×6 were

for the position loop control, while K2 ∈ R
7×7 and CR2 ∈ R

7×7

were for attitude loop control, respectively.
The 3Doverview of the position trajectory is shown in Figure

2(b). The reference trajectory vectors are defined as

rh1 =
[
rTh,ρ rTh,δ

]T
; rh2 =

[
rh,z rTh,ξ rTh,δ

]T
rh,ξ = [

rh,x rh,y rh,z
]T ; rh,ξ = [

rh,roll rh,pitch rh,yaw
]T ;

rh,δ = [
rh,δ1 rh,δ2 rh,δ3

]T
for y1 and y2 in the two control loops respectively. The trajecto-
ries were designed as smooth periodic functions:

rh,x = aA,1(cos(ωc1 t)− 0.5 sin(ωc2 t))

rh,y = aA,1(sin(ωc1 t)− 0.5 sin(ωc2 t))

rh,z = aA,2 sin(ωc2 t); rh,yaw = ωc1 t; rh,δ1 = ωc3 t

rh,δ2 = aA,1 sin(ωc2 t); rh,δ3 = aA,1 sin(ωc2 t)

Here, aA = [aA,1, aA,2, aA,3] ∈ R
3+ are the amplitude coefficients

and ωc = [ωc1 ,ωc2 ,ωc3 ] ∈ R
3+ are the periodic rate coefficients.

The attitude references rh,roll and rh,pitch are planned based on
ryaw and uv,f calculated from the outer control loop. The atti-
tude references in Euler angles are then converted into the
quaternion references for the inner control loop.

Based on the above information, the control flow chart is
demonstrated in Figure 3. In the framework, uf ,1 and uf ,2 are
the feed-forward controllers calculated for the outer and inner
loops, respectively. Based on the simulation setup, the acceler-
ations of internal states q̈i = [ρ̈x, ρ̈y]T are required. While the
system is under-actuated, ρ̈x, ρ̈y, and ρ̈z are interdependent pro-
vided that thrusts and the gravitational forces are the only exter-
nal forces acting on the aerial manipulator. FromEquations (66)
and (68), by assuming the ideal condition that w ∼ 0, the ratio
between the translational accelerations can be calculated based
on

(mUAV + marm + θM + θm1 + θm2)
[
ρ̈x ρ̈y ρ̈z + cG

]T
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Figure 3. The multi-loop control framework of the aerial manipulator.

= JTuf ,Tuf (70)

where cG is the gravitational acceleration (9.81m/s2). For esti-
mation, similar to Equation (45), we can estimate ρ̈z = r̈h,z +
ėD,z, where ėD,z is the first element of the feedback acceler-
ation R−1

ε KTKε in Equation (59) calculated from the outer
control loop. Hence, based on the knowledge of the forces in
the system (recall Remark 3.2), q̈i can be estimated based on the
relationship in Equation (70).

4.2 Results and discussion

With the standard controller first implemented in the sim-
ulation, Figure 4 shows the comparison between position
errors under zero-disturbance condition in the upper row, and
under disturbance in the lower row. It should be noted that
both sets of error did not converge to zero, as the steady
state tracking errors oscillated periodically in both simula-
tions. This may be as a result of a delayed response due to
input rate limitation or the moment of inertia of the sys-
tem floating base, which was assumed to be negligible dur-
ing the controller design. The non-smooth attitude reference
acquired from the outer control loop with numerical differen-
tiation may also be a reason for the oscillations in the output
errors.

The disturbance had a significant effect on the control per-
formance as the amplitudes of the error oscillations were sig-
nificantly larger. The result also showed that the joint angles δ2
were greatly affected by the disturbances, which is likely due
to the low inertia of the links near the end of the manipula-
tor. However, under both conditions the controller managed
to contain the system in the vicinity of the error equilibrium
(e = 0). The control input for the disturbed system is shown in
Figure 5, where it is apparent that the rotor input never exceeded
40N. The joint motor input oscillates withmagnitudes less than
2N-m.

In these two simulations, the robustness augmentation part
of the controllerwas already playing an effective role. To demon-
strate the effect, the norm of the steady state errors from sim-
ulations with different control parameters were compared and
analysed. In the subplots on the upper row of Figure 6, cw was
tuned to adjust the strength of the robustness augmentation
of the controller. As the disturbances had the most significant
effect on the joints, the robust control contributes the most
to the disturbance attenuation in the manipulator joint angle
errors. The result shows that doubling cw greatly alleviates these
errors, while it also slightly affected the performance in posi-
tion and quaternion tracking. On the other hand, by decreasing
cw to 0, the controller was equivalent to an adaptive PID con-
troller. In this case, the norm of the joint angle error had peaked
over 0.5 rad, which was significantly higher than the errors in
the simulations with robust control.

Figure 4. Comparison of position errors between zero-disturbance (upper row) and disturbed conditions (lower row).
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Figure 5. Control input of the system under disturbed simulation.

Figure 6. Performance comparison of controllers with different parameters (upper row: different cw ; lower row: different CR) under disturbance.

The subplots on the lower row of Figure 6 compare the per-
formance of controllers with a different performance parameter
CR. When CR was increased, the error oscillation amplitudes
recognisably decreased in position and quaternion tracking.
Improving the control gain usually yields better performance
and robustness, while a high control gain also requires higher
input capacity in power and rate. It is also noticed that the per-
formance improvement in reducing the joint angle errors was
not as insignificant when compared with increasing cw. The
definition of G in Equation (50) implies the susceptibility of
outputs with respect to the noise, which is determined by the
disturbance magnitude indicated by W versus the inertia M.
Therefore, increasing cw is different from increasing CR in the
way that it can specifically target the most disturbance-sensitive
outputs, which in this case are the manipulator joints. This also
implies that a good estimation ofW in practical applications is
crucial toward the robustness of the controller design.

As shown in Figure 7, the uncertainty parameters in the
two simulations did not converge to the true value. Apart from
eliminating numerical errors, the perfect convergence of the
parameters for this system requires reliable estimation of accel-
erations q̈, carefully selected adaptive gain �, and appropriate
control input rates. In these simulations, the closed form pre-
sentation of q̈ cannot be acquired due to under-actuation. As
mentioned previously in Section 4.1, the 2nd order derivative
of the internal states q̈i was approximated from ėD,z and r̈h,z.
The approximation used rh,ξ to determine the ratio between the
three translational accelerations, only considered the effect of
the lifting thrust and gravitational force. Therefore, the delay

in attitude tracking and the approximation error due to other
model effects (e.g. air viscosity damping in the simulation) have
caused the uncertainty parameter to oscillate in the vicinity
of the true value. The subplots on the lower row show that
the disturbance can worsen the convergence of the parame-
ters. Increasing � will reduce the sensitivity of the uncertainty
parameter dynamics towards the disturbances, while it also
increases the time for it to reach steady state.

However, for fully-actuated or over-actuated systems, q̈ can
be fully acquired based on estimating the ėd fromEquation (31),
which can result in better uncertainty parameter convergence.
To demonstrate this feature, the setup for the original sys-
tem was modified so that u = [uTvf , u

T
vτ , u

T
τ ]T where the virtual

torque uvτ ∈ R
3 shares the same input Jacobian as w1,τ , which

leads to a fully-actuated system. This system was also assumed
to be unperturbed with w = 0 and having a control input rate
of 2000Hz. In Figure 8, the errors between the true value and
estimated uncertainty parameters of the fully actuated system
at steady state are presented, where the time window has been
zoomed to t ∈ [300, 600] in seconds. It is clearly shown that the
uncertainty parameters in a fully actuated system had a much
better convergence, under the condition that the adoptedmodel
uncertainty structure fθ in controller design match with the real
application case.

Finally, it should be emphasised that the whole-body con-
troller for this systemwas fully based on the individual dynamic
properties from each module, asM, H, Ju, L�1, F, andW can all
be separately prepared. This shows that the basic goal of estab-
lishing a controller framework for a modular robotic system is
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Figure 7. Comparison of uncertainty parameter error.

Figure 8. Adaptive parameter error of the fully actuated system simulation.

obtained. The simulation has verified the feasibility of the tech-
nique, and refining the performance will be a topic of interest
for future work.

5. Conclusion and future work

This paper proposed a framework of robust adaptive input-
output controller design for constrained and nonholonomic
robotic systems. The adaptive model regression and gain tun-
ingwas realised by parameter affinemodel-based functions, and
theH∞ robustness augmentationwas obtained based on inverse
optimality. With reasonable application assumptions, the sim-
ulation results have corroborated the main theorem presented
in the paper, which proves the feasibility of the framework by
showing the error convergence, uncertainty parameters and the
attenuation of disturbance effects. As amajor objective, the con-
trol framework has realised a whole-body control of a robotic
system completely established on the individual properties of
the modules.

The control framework presented in this paper has a num-
ber of limitations that require attentions in future works. The
proposed method can be further improved by (1) investigat-
ing approaches to avoid the use of estimations or measurements
of acceleration-related terms; (2) exploring more flexible CLF
design techniques to support a wider variety of control require-
ments; (3) extending the control framework to applications in

switching and hybrid systems. The control framework should
also be further studied on real applications, in which factors
involving noise from sensors and discrete dynamic behaviours
may occur. By the conclusion of the study, the developed theory
can sufficiently provide a preliminary robust adaptive control
template for a wide family of robots.
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With the equality of


γε
(
2‖(KTKG)Tε‖) = εT(KTKG)(KTKG)Tε

the derivative of Equation (62) can be presented in the form

V̇2(e, θ̂ ) = Lf V2 + εTKTK(F + L1(x, ėD))θ + εTKTKψ2,0(x, e, q̈i, θ̂ )

+ 
γε
(
2‖(KTKG)Tε‖)− θ̃T�

˙̂
θ

with the previous setups of the feedback control law in Equation (54).
According to Proposition 3.1, with the approximation L�1ėD ≈ L�1ψPID
through Equation (34), and provided that the parameter update law forψ2,0
is

˙̂
θ2,0 = �−1(F + L1(x,ψPID)

)TKTKε (A1)
the V̇2(x, e, θ̂ ) term can be further simplified as

V̇2(e, θ̂ ) = Lf V2 + (
εTKTK(F + L1(x,ψPID))θ̃ − θ̃T�

˙̂
θ
)

− εTKTKR−1
ε KTKε + 
γε
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ε KTKε
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− c1
γε
(
2‖(KTKG)Tε‖))

= V̇2,0(e) ≤ −Q(e, θ̂ )

where Q(e, θ̂ ) : R2ny × Rnθ → R+. This leads to

lε ≥ 2c1Q + c1
γε
(
2‖(KTKG)Tε‖)+ c1(c1 − 2)εTKTKR−1

ε KTKε (A2)

As c1 > 2, it can be proved that lε > 0. Thus, Jε is a meaningful cost func-
tion that penalises x,ψε , andw. Therefore, rearranging Equation (63) yields
the derivation of Equation (A3), which is acquired based on the error
equivalence in Equation (45), the disturbance alternative in Equation (50),
the feedback controller in Equation (59), the adaptive update law in
Equation (61), and the definition of ψε in Equation (65). The final form
of Jε is written as

Jε(ψε) = sup
w∈Wε

{
lim
t→∞

[
c1θ̃T�θ̃ + 2c1

∫ t

0

(
εTKTK(F + L1(x,ψε))θ̃

)
dτ

+ 2c1V2,0(e)− 2c1
∫ t

0

(
Lf V2,0 + εTKTK

× (
(F + L1(x,ψε))(θ − θ̂ )+ ψε + Gw

))
dτ

+
∫ t

0

(
c21ε

TKTKR−1
ε KTKε + 2c1εTKTKψε + ψT

ε Rεψε
)
dτ

−
∫ t

0

(
c1‖w‖2 − 2c1εTKTKGw+ c1
γε

(
2‖(KTKG)Tε‖)) dτ]}

= sup
w∈Wε

{
lim
t→∞

[
c1θ̃T�θ̃ − 2c1

∫ t

0

( ˙̃
θT�θ̃

)
dτ + 2c1V2,0(e)

− 2c1
∫ t

0

(
Lf V2,0 + εTKTK

(
(F + L1(x,ψε))θ + ψ2 + Gw

))
dτ

− c1
∫ t

0

(
‖w − (KTKG)Tε‖2

)
dτ

+
∫ t

0

((
ψε + c1R−1

ε KTKε
)TRε(ψε + c1R−1

ε KTKε
))

dτ
]}

(A3)

Jε = c1θ̃T(0)�θ̃(0)+ 2c1V2,0
(
x(0), e(0), θ̂ (0)

)
+
∫ ∞

0

((
ψε + c1R−1

ε KTKε
)TRε(ψε + c1R−1

ε KTKε
))

dτ

+ c1 sup
w∈Wε

{
−
∫ ∞

0

(
‖w − (KTKG)Tε‖2

)
dτ
}

(A4)

It can be proved that

ϒε = sup
w∈Wε

{
−
∫ ∞

0

(
‖w − (KTKG)Tε‖2

)
dτ
}

≤ 0 (A5)

and ϒε = 0 is achieved if and only if the worst-case disturbance
w� = (KTKG)Tε occurs. Therefore, the solution for a minimal Jε is
ψε = −c1R−1

ε KTKε, which proves Theorem 3.1.
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